skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Generalized symmetries in 2D from string theory: SymTFTs, intrinsic relativeness, and anomalies of non-invertible symmetries
Generalized global symmetries, in particular non-invertible and categorical symmetries, have become a focal point in the recent study of quantum field theory (QFT). In this paper, we investigate aspects of symmetry topological field theories (SymTFTs) and anomalies of non-invertible symmetries for 2D QFTs from a string theory perspective. Our primary focus is on an infinite class of 2D QFTs engineered on D1-branes probing toric Calabi-Yau 4-fold singularities. We derive 3D SymTFTs from the topological sector of IIB supergravity and discuss the resulting 2D QFTs, which can be intrinsically relative or absolute. For intrinsically relative QFTs, we propose a sufficient condition for them to exist. For absolute QFTs, we show that they exhibit non-invertible symmetries with an elegant brane origin. Furthermore, we find that these non-invertible symmetries can suffer from anomalies, which we discuss from a top-down perspective. Explicit examples are provided, including theories for including theories for Y(p,k)(ℙ2), Y(2,0)(ℙ1×ℙ1), and ℂ4/ℤ4 geometries.  more » « less
Award ID(s):
2412479
PAR ID:
10600968
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> Gauging is a powerful operation on symmetries in quantum field theory (QFT), as it connects distinct theories and also reveals hidden structures in a given theory. We initiate a systematic investigation of gauging discrete generalized symmetries in two-dimensional QFT. Such symmetries are described by topological defect lines (TDLs) which obey fusion rules that are non-invertible in general. Despite this seemingly exotic feature, all well-known properties in gauging invertible symmetries carry over to this general setting, which greatly enhances both the scope and the power of gauging. This is established by formulating generalized gauging in terms of topological interfaces between QFTs, which explains the physical picture for the mathematical concept of algebra objects and associated module categories over fusion categories that encapsulate the algebraic properties of generalized symmetries and their gaugings. This perspective also provides simple physical derivations of well-known mathematical theorems in category theory from basic axiomatic properties of QFT in the presence of such interfaces. We discuss a bootstrap-type analysis to classify such topological interfaces and thus the possible generalized gaugings and demonstrate the procedure in concrete examples of fusion categories. Moreover we present a number of examples to illustrate generalized gauging and its properties in concrete conformal field theories (CFTs). In particular, we identify the generalized orbifold groupoid that captures the structure of fusion between topological interfaces (equivalently sequential gaugings) as well as a plethora of new self-dualities in CFTs under generalized gaugings. 
    more » « less
  2. We explore exact generalized symmetries in the standard 2+1d lattice\mathbb{Z}_2 2 gauge theory coupled to the Ising model, and compare them with their continuum field theory counterparts. One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases. The non-invertible algebra involves a lattice condensation operator, which creates a toric code ground state from a product state. Another model has a mixed anomaly between a 1-form symmetry and an ordinary symmetry. This anomaly enforces a nontrivial transition in the phase diagram, consistent with the “Higgs=SPT” proposal. Finally, we discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation. 
    more » « less
  3. We investigate the interplay of generalized global symmetries in 2+1 dimensions by introducing a lattice model that couples a ZN clock model to a ZN gauge theory via a topological interaction. This coupling binds the charges of one symmetry to the disorder operators of the other, and when these composite objects condense, they give rise to emergent generalized symmetries with mixed ’t Hooft anomalies. These anomalies result in phases with ordinary symmetry breaking, topological order, and symmetry-protected topological (SPT) order, where the different types of order are not independent but intimately related. We further explore the gapped boundary states of these exotic phases and develop theories for phase transitions between them. Additionally, we extend our lattice model to incorporate a non-invertible global symmetry, which can be spontaneously broken, leading to domain walls with non-trivial fusion rules. 
    more » « less
  4. A bstract We analyze topological mass terms of BF type arising in supersymmetric M-theory compactifications to AdS 5 . These describe spontaneously broken higher-form gauge symmetries in the bulk. Different choices of boundary conditions for the BF terms yield dual field theories with distinct global discrete symmetries. We discuss in detail these symmetries and their ’t Hooft anomalies for 4d $$ \mathcal{N} $$ N = 1 SCFTs arising from M5-branes wrapped on a Riemann surface without punctures, including theories from M5-branes at a ℤ 2 orbifold singularity. The anomaly polynomial is computed via inflow and contains background fields for discrete global 0-, 1-, and 2-form symmetries and continuous 0-form symmetries, as well as axionic background fields. The latter are properly interpreted in the context of anomalies in the space of coupling constants. 
    more » « less
  5. We consider Abelian topological quantum field theories (TQFTs) in 3D and show that gaugings of invertible global symmetries naturally give rise to additive codes. These codes emerge as nonanomalous subgroups of the 1-form symmetry group, parametrizing the fusion rules of condensable TQFT anyons. The boundary theories dual to TQFTs with a maximal symmetry subgroup gauged, i.e., with the corresponding anyons condensed, are “code” conformal field theories (CFTs). This observation bridges together, in the holographic sense, results on 1-form symmetries of 3D TQFTs with developments connecting codes to 2D CFTs. Building on this relationship, we proceed to consider the ensemble of maximal gaugings (topological boundary conditions) in a general, not necessarily Abelian 3D TQFT, and propose that the resulting ensemble of boundary CFTs has a holographic description as a gravitational theory: the bulk TQFT summed over topologies. 
    more » « less