Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            A<sc>bstract</sc> Deformations of the heterotic superpotential give rise to a topological holomorphic theory with similarities to both Kodaira-Spencer gravity and holomorphic Chern-Simons theory. Although the action is cubic, it is only quadratic in the complex structure deformations (the Beltrami differential). Treated separately, for large fluxes, or alternatively at large distances in the background complex structure moduli space, these fields can be integrated out to obtain a new field theory in the remaining fields, which describe the complexified hermitian and gauge degrees of freedom. We investigate properties of this new holomorphic theory, and in particular connections to the swampland distance conjecture in the context of heterotic string theory. In the process, we define a new type of symplectic cohomology theory, where the background complex structure Beltrami differential plays the role of the symplectic form.more » « lessFree, publicly-accessible full text available January 29, 2026
- 
            A<sc>bstract</sc> We explore the symmetry structure of Type II Little String Theories and their T-dualities. We construct these theories both from the bottom-up perspective starting with seed Superconformal Field Theories, and from the top-down using F-/M-theory. By exploiting anomaly inflow and unitarity of the LST worldsheet theory, we derive strong conditions on the possible 6D bulk theories and their flavor algebras. These constraints continue to apply if gravity is coupled to the theory. We also study the higher form symmetry structure of these theories and show how they get exchanged under T-duality. Finally, we comment on seemingly consistent bottom-up Little String Theories that cannot be constructed from the top-down approach.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Abstract We develop a general theory of flows in the space of Riemannian metrics induced by neural network (NN) gradient descent. This is motivated in part by recent advances in approximating Calabi–Yau metrics with NNs and is enabled by recent advances in understanding flows in the space of NNs. We derive the corresponding metric flow equations, which are governed by a metric neural tangent kernel (NTK), a complicated, non-local object that evolves in time. However, many architectures admit an infinite-width limit in which the kernel becomes fixed and the dynamics simplify. Additional assumptions can induce locality in the flow, which allows for the realization of Perelman’s formulation of Ricci flow that was used to resolve the 3d Poincaré conjecture. We demonstrate that such fixed kernel regimes lead to poor learning of numerical Calabi–Yau metrics, as is expected since the associated NNs do not learn features. Conversely, we demonstrate that well-learned numerical metrics at finite-width exhibit an evolving metric-NTK, associated with feature learning. Our theory of NN metric flows therefore explains why NNs are better at learning Calabi–Yau metrics than fixed kernel methods, such as the Ricci flow.more » « less
- 
            A<sc>bstract</sc> We explore the T-duality web of 6D Heterotic Little String Theories, focusing on flavor algebra reducing deformations. A careful analysis of the full flavor algebra, including Abelian factors, shows that the flavor rank is preserved under T-duality. This suggests a new T-duality invariant in addition to the Coulomb branch dimension and the two-group structure constants. We also engineer Little String Theories with non-simply laced flavor algebras, whose appearance we attribute to certain discrete 3-form fluxes in M-theory. Geometrically, these theories are engineered in F-theory with non-Kähler favorable K3 fibers. This geometric origin leads us to propose that freezing fluxes are preserved across T-duality. Along the way, we discuss various exotic models, including two inequivalent Spin(32)/ℤ2models that are dual to the same E8× E8theory, and a family of self-T-dual models.more » « less
- 
            A<sc>bstract</sc> We study the duality between the Spin(32)/ℤ2heterotic string without vector structure and F-theory with frozen singularities. We give a complete description in theories with 6d$$ \mathcal{N} $$ = (1, 0) supersymmetry and identify the duals of Spin(32)/ℤ2-instantons on ADE singularities without vector structure in the frozen phase of F-theory using an ansatz introduced by Bhardwaj, Morrison, Tachikawa, and Tomasiello. As a consequence, we obtain a strongly coupled description of orbifold phases of type I string theory without vector structure, substantially expanding the list of known examples of 6d F-theory compactifications with frozen singularities. Supergravity theories can befusedfrom these instanton theories, in a way that commutes with switching off vector structure, which we use to propose new consistency checks via neutral hypermultiplet counting. Finally, we describe various Higgsings of this duality, and comment on constraints on higher form symmetries.more » « less
- 
            A<sc>bstract</sc> Finding string backgrounds with de Sitter spacetime, where all approximations and corrections are controlled, is an open problem. We revisit the search for de Sitter solutions in the classical regime for specific type IIB supergravity compactifications on group manifolds, an under-explored corner of the landscape that offers an interesting testing ground for swampland conjectures. While the supergravity de Sitter solutions we obtain numerically are ambiguous in terms of their classicality, we find an analytic scaling that makes four out of six compactification radii, as well as the overall volume, arbitrarily large. This potentially provides parametric control over corrections. If we could show that these solutions, or others to be found, are fully classical, they would constitute a counterexample to conjectures stating that asymptotic de Sitter solutions do not exist. We discuss this point in great detail.more » « less
- 
            A<sc>bstract</sc> We study the complex structure moduli dependence of the scalar Laplacian eigenmodes for one-parameter families of Calabi-Yaun-folds in ℙn+1. It was previously observed that some eigenmodes get lighter while others get heavier as a function of these moduli, which leads to eigenvalue crossing. We identify the cause for this behavior for the torus. We then show that at points in a sublocus of complex structure moduli space where Laplacian eigenmodes cross, the torus has complex multiplication. We speculate that the generalization to arbitrary Calabi-Yau manifolds could be that level crossing is related to rank one attractor points. To test this, we compute the eigenmodes numerically for the quartic K3 and the quintic threefold, and match crossings to CM and attractor points in these varieties. To quantify the error of our numerical methods, we also study the dependence of the numerical spectrum on the quality of the Calabi-Yau metric approximation, the number of points sampled from the Calabi-Yau variety, the truncation of the eigenbasis, and the distance from degeneration points in complex structure moduli space.more » « less
- 
            Free, publicly-accessible full text available May 13, 2026
- 
            Despite their successes, machine learning techniques are often stochastic, error-prone and blackbox. How could they then be used in fields such as theoretical physics and pure mathematics for which error-free results and deep understanding are a must? In this Perspective, we discuss techniques for obtaining zero-error results with machine learning, with a focus on theoretical physics and pure mathematics. Non-rigorous methods can enable rigorous results via conjecture generation or verification by reinforcement learning. We survey applications of these techniques-for-rigor ranging from string theory to the smooth 4D Poincaré conjecture in low-dimensional topology. We also discuss connections between machine learning theory and mathematics or theoretical physics such as a new approach to field theory motivated by neural network theory, and a theory of Riemannian metric flows induced by neural network gradient descent, which encompasses Perelman’s formulation of the Ricci flow that was used to solve the 3D Poincaré conjecture.more » « less
- 
            A bstract Calabi-Yau threefolds with infinitely many flops to isomorphic manifolds have an extended Kähler cone made up from an infinite number of individual Kähler cones. These cones are related by reflection symmetries across flop walls. We study the implications of this cone structure for mirror symmetry, by considering the instanton part of the prepotential in Calabi-Yau threefolds. We show that such isomorphic flops across facets of the Kähler cone boundary give rise to symmetry groups isomorphic to Coxeter groups. In the dual Mori cone, non-flopping curve classes that are identified under these groups have the same Gopakumar-Vafa invariants. This leads to instanton prepotentials invariant under Coxeter groups, which we make manifest by introducing appropriate invariant functions. For some cases, these functions can be expressed in terms of theta functions whose appearance can be linked to an elliptic fibration structure of the Calabi-Yau manifold.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
