skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Dynamic drop penetration of vertically oriented fiber arrays
This experimental work investigates the impact dynamics of drops on vertically oriented, three-dimensional-printed (3D-printed) fiber arrays with variations in packing density, fiber arrangement, and wettability. These fiber arrays are inspired by mammalian fur, and while not wholly representative of the entire morphological range of fur, they do reside within its spectrum. We define an aspect ratio, a modified fiber porosity relative to the drop size, that characterizes various impact regimes. Using energy conservation, we derive a model relating drop penetration depth in vertical fibers to the Weber number. In sparse fibers where the Ohnesorge number is less than 4×10−3, penetration depth scales linearly with the impact Weber number. In hydrophobic fibers, density reduces penetration depth when the contact angle is sufficiently high. Hydrophilic arrays have greater penetration than their hydrophobic counterparts due to capillarity, a result that contrasts the drop impact-initiated infiltration of horizontal fibers. Vertical capillary infiltration of the penetrated liquid is observed whenever the Bond number is less than 0.11. For hydrophilic fibers, we predict that higher density will promote drop penetration when the contact angle is sufficiently low. Complete infiltration by the drop is achieved at sufficient times regardless of drop impact velocity.  more » « less
Award ID(s):
2153740
PAR ID:
10570253
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Fluids
Volume:
37
Issue:
2
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We experimentally investigate liquid infiltration into horizontally oriented fiber arrays imposed by sequential drop impacts. Our experimental system is inspired by mammalian fur coats, and our results provide insight to how we expect natural fibers to respond to falling drops and the structure innate to this multiscale covering. Two successive drop impacts are filmed striking three-dimensional-printed fiber arrays with varying densities, surface wettability, and fixed fiber diameter. The penetration depth and the lateral width of drop spreading within fiber layers are functions of drop displacement relative to the liquid already within the array as well as the drop Weber number. Hydrophobic fibers more effectively prevent an increase in penetration depth by the second impacting drop at low impact Weber numbers, whereas hydrophilic fibers ensure lower liquid penetration depth into the array as the Weber number increases. Impact outcomes, such as penetration depth and lateral spreading, are insensitive to impact eccentricity between the first and second drops at high experimental Weber numbers. As expected, denser, staggered fibers reduce infiltration, preventing the entire drop mass from entering the array. Fragmentation of the first drop, which is promoted by hydrophobicity, larger inter-fiber spacing, and higher drop impact velocity, limits increases in lateral spreading and penetration depth of the liquid mass from a subsequent drop. 
    more » « less
  2. In this experimental work, we compare the drop impact behavior on horizontal fiber arrays with circular and wedged fiber cross sections. Non-circular fibers are commonplace in nature, appearing on rain-interfacing structures from animal fur to pine needles. Our arrays of packing densities ≈ 50, 100, and 150 cm−2 are impacted by drops falling at 0.2–1.6 m/s. A previous work has shown that hydrophilic horizontal fiber arrays reduce dynamic drop penetration more than their hydrophobic counterparts. In this work, we show that circularity, like hydrophobicity, increases drop penetration. Despite being more hydrophilic than their non-circular counterparts, our hydrophilic circular fibers promote drop penetration by 26% more than their non-circular counterparts through suppression of lateral spreading and promotion of drop fragmentation within the array. Circular fiber cross sections induce a more circular liquid shape within the fiber array after infiltration. Using conservation of energy, we develop a model that predicts the penetration depth within the fiber array using only measurements from a single external camera above the array. We generalize our model to accommodate fibers of any convex cross-sectional geometry. 
    more » « less
  3. This experimental work builds on our previous studies on the post-impact characteristics of drops striking three-dimensional-printed fiber arrays by investigating the highly transient characteristics of impact. We measure temporal changes in drop penetration depth, lateral spreading, and drop dome height above the fiber array as the drop impacts. Liquid penetration of vertical fibers may be divided into three sequential periods with linearly approximated rates of penetration: (i) an inertial regime, where penetration dynamics are governed by inertia; (ii) a transitional regime exhibiting inertial and capillary action; and (iii) a capillary regime characterized purely by downward wicking. Horizontal fibers exhibit only the inertial and transitional stages, with wicking only observed horizontally along the direction of fibers. In horizontal hydrophilic fiber arrays, the time duration to reach the maximum lateral deformation of the drop is proportional to We1/4, as observed in drops impacting solid surfaces. There exists a critical Weber number below which the drop shows no radial deformation, and the critical value increases with decreasing fiber density. At large Weber numbers, drops splash. In contrast, vertical fibers restrict the lateral spreading of the drop, thereby suppressing a splash for all tested drop velocities, even those exceeding 5 m/s. 
    more » « less
  4. Droplet impacts on solid surfaces produce a wide variety of phenomena such as spreading, splashing, jetting, receding, and rebounding. In microholed surfaces, downward jets through the hole can be caused by the high impact inertia during the spreading phase of the droplet over the substrate as well as the cavity collapse during recoil phase of the droplet. We investigate the dynamics of the jet formed through the single hole during the impacting phase of the droplet on a micro-holed hydrophilic substrate. The sub-millimeter circular holes are created on the 0.2 mm-thickness hydrophilic plastic films using a 0.5 mm punch. Great care has been taken to ensure that the millimeter-sized droplets of water dispensed by a syringe pump through a micropipette tip can impact directly over the micro-holes. A high-speed video photography camera is employed to capture the full event of impacting and jetting. A MATLAB code has been developed to process the captured videos for data analysis. We study the effect of impact velocity on the jet formation including jet velocity, ejected droplet volume, and breakup process. We find that the Weber number significantly affects outcomes of the drop impact and jetting mechanism. We also examine the dynamic contact angle of the contact line during the spreading and the receding phase. 
    more » « less
  5. This paper investigates the use of environmentally friendly remediation materials and techniques for rain-induced post-wildfire soil erosion on burned slopes. During wildfires, vegetation and organic matter combust and release hydrophobic chemicals on soil grains. Hydrophobicity reduces the water infiltration rate, prolongs the wetting process, increases erosion, and causes severe debris flows over watersheds. This comparative study presents the most effective approaches for mitigating hydrophobicity effects through environmentally friendly biopolymers and surfactants. Experimental techniques evaluate the dynamics of water drop penetration into treated and untreated soil, downhill water drop mobility, and erosion. The waterdrop contact angle measurements indicate that biopolymer Xanthan Gum (XG) slightly reduces hydrophobicity, whereas surfactant Sodium Cocoyl Isethionate (SCI) reduces it by a factor of a thousand. In addition, SCI can decrease slope erosion at low-inclined and moderate-inclined slopes. Sands' infiltration rates (IR) are very fast due to high permeability in normal conditions; however, surface hydrophobicity significantly reduces IR. Results from artificially treated extremely water-repellent samples of mixed sand show a six orders of magnitude decrease in IR. Then, after treatments XG and SCI modifiers, the IR increased by an order of magnitude after the XG treatments, and by four orders of magnitude under SCI treatment. Although XG is wettable and attractive to water, the crust and webs it forms between sand particles prevent effective water infiltration. Mild slopes exhibit similar IR rates as horizontal surfaces for all the cases; however, steeper slopes reduce IR for treated hydrophobic soils because they allow for downhill motion of water that is faster relative to the infiltration speed. 
    more » « less