Abstract Garnet‐type Li7La3Zr2O12(LLZO) solid‐state electrolytes hold great promise for the next‐generation all‐solid‐state batteries. An in‐depth understanding of the phase transformation during synthetic processes is required for better control of the crystallinity and improvement of the ionic conductivity of LLZO. Herein, the phase transformation pathways and the associated surface amorphization are comparatively investigated during the sol–gel and solid‐state syntheses of LLZO using in situ heating transmission electron microscopy (TEM). The combined ex situ X‐ray diffraction and in situ TEM techniques are used to reveal two distinct phase transformation pathways (precursors → La2Zr2O7 → LLZO and precursors → LLZO) and the subsequent layer‐by‐layer crystal growth of LLZO on the atomic scale. It is also demonstrated that the surface amorphization surrounding the LLZO crystals is sensitive to the postsynthesis cooling rate and significantly affects the ionic conductivity of pelletized LLZO. This work brings up a critical but often overlooked issue that may greatly exacerbate the Li‐ion conductivity by undesired synthetic conditions, which can be leveraged to ameliorate the overall crystallinity to improve the electrochemical performance of LLZO. These findings also shed light on the significance of optimizing surface structure to ensure superior performance of Li‐ion conductors.
more »
« less
Temperature dependence of irradiation-induced amorphization in a high-entropy titanate pyrochlore
Abstract The temperature dependence of amorphization in a high-entropy pyrochlore, (Yb0.2Tm0.2Lu0.2Ho0.2Er0.2)2Ti2O7, under irradiation with 600 keV Xe ions has been studied using in situ transmission electron microscopy (TEM). The critical amorphization dose increases with temperature, and the critical temperature for amorphization is 800 K. At room temperature, the critical amorphization dose is larger than that previously determined for this pyrochlore under bulk-like 4 MeV Au ion irradiation but is similar to the critical doses determined in two other high-entropy titanate pyrochlores under 800 keV Kr ion irradiation using in situ TEM, which is consistent with reported behavior in simple rare-earth titanate pyrochlores. Graphical abstract
more »
« less
- Award ID(s):
- 2104228
- PAR ID:
- 10570307
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- MRS Communications
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 2159-6867
- Page Range / eLocation ID:
- 1364 to 1370
- Subject(s) / Keyword(s):
- Ceramic Pyrochlore Ion-Solid Interactions Radiation Effects Amorphization Transmission Electron Microscopy
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ni-SiOC nanocomposites maintain crystal-amorphous dual-phase nanostructures after high-temperature annealing at different temperatures (600 °C, 800 °C and 1000 °C), while the feature sizes of crystal Ni and amorphous SiOC increase with the annealing temperature. Corresponding to the dual-phase nanostructures, Ni-SiOC nanocomposites exhibit a high strength and good plastic flow stability. In this study, we conducted a He implantation in Ni-SiOC nanocomposites at 300 °C by in-situ transmission electron microscope (TEM) irradiation test. In-situ TEM irradiation revealed that both crystal Ni and amorphous SiOC maintain stability under He irradiation. The 600 °C annealed sample presents a better He irradiation resistance, as manifested by a smaller He-bubble size and lower density. Both the grain boundary and crystal-amorphous phase boundary act as a sink to absorb He and irradiation-induced defects in the Ni matrix. More importantly, amorphous SiOC ceramic is immune to He irradiation damage, contributing to the He irradiation resistance of Ni alloy.more » « less
-
As one candidate alloy for future Generation IV and fusion reactors, a dual-phase 12Cr oxide-dispersion-strengthened (ODS) alloy was developed for high temperature strength and creep resistance and has shown good void swelling resistance under high damage self-ion irradiation at high temperature. However, the effect of helium and its combination with radiation damage on oxide dispersoid stability needs to be investigated. In this study, 120 keV energy helium was preloaded into specimens at doses of 1 × 1015 and 1 × 1016 ions/cm2 at room temperature, and 3.5 MeV Fe self-ions were sequentially implanted to reach 100 peak displacement-per-atom at 475 °C. He implantation alone in the control sample did not affect the dispersoid morphology. After Fe ion irradiation, a dramatic increase in density of coherent oxide dispersoids was observed at low He dose, but no such increase was observed at high He dose. The study suggests that helium bubbles act as sinks for nucleation of coherent oxide dispersoids, but dispersoid growth may become difficult if too many sinks are introduced, suggesting that a critical mass of trapping is required for stable dispersoid growth.more » « less
-
Ion beam-induced deposition (IBID) using Pt(CO)2Cl2and Pt(CO)2Br2as precursors has been studied with ultrahigh-vacuum (UHV) surface science techniques to provide insights into the elementary reaction steps involved in deposition, complemented by analysis of deposits formed under steady-state conditions. X-ray photoelectron spectroscopy (XPS) and mass spectrometry data from monolayer thick films of Pt(CO)2Cl2and Pt(CO)2Br2exposed to 3 keV Ar+, He+, and H2+ions indicate that deposition is initiated by the desorption of both CO ligands, a process ascribed to momentum transfer from the incident ion to adsorbed precursor molecules. This precursor decomposition step is accompanied by a decrease in the oxidation state of the Pt(II) atoms and, in IBID, represents the elementary reaction step that converts the molecular precursor into an involatile PtX2species. Upon further ion irradiation these PtCl2or PtBr2species experience ion-induced sputtering. The difference between halogen and Pt sputter rates leads to a critical ion dose at which only Pt remains in the film. A comparison of the different ion/precursor combinations studied revealed that this sequence of elementary reaction steps is invariant, although the rates of CO desorption and subsequent physical sputtering were greatest for the heaviest (Ar+) ions. The ability of IBID to produce pure Pt films was confirmed by AES and XPS analysis of thin film deposits created by Ar+/Pt(CO)2Cl2, demonstrating the ability of data acquired from fundamental UHV surface science studies to provide insights that can be used to better understand the interactions between ions and precursors during IBID from inorganic precursors.more » « less
An official website of the United States government

