skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 27, 2026

Title: Competition Between Halogen Atom and Ring of Halobenzenes as Hydrogen Bond Electron Donor Sites
Abstract A halobenzene molecule contains several sites that are capable of acting in an electron‐donating capacity within a H−bond. One set of such sites comprise the lone electron pairs of the halogen (X) atoms on the periphery of the ring. The π‐electron system above the ring plane can also fulfill this function in many cases. DFT calculations are applied to compare and contrast the propensity of these two site types to engage in such a H−bond within the context of mono, di, tri, tetra, and hexasubstituted halobenzenes. The X atoms chosen for study comprise the full set: F, Cl, Br, and I. It is found that even when the electrostatic potential of the X lone pair is more negative than that above the ring, it is the latter position which is the preferred binding site of HCl in most cases. This preference switches over to the X lone pair only for higher order of substitution, with n=4 or 6. This pattern is explained in large measure by the higher contribution of dispersion when the proton donor is located above the ring.  more » « less
Award ID(s):
1954310
PAR ID:
10570385
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhysChem
Volume:
26
Issue:
7
ISSN:
1439-4235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The replacement of a CH group of benzene by a triel (Tr) atom places a positive region of electrostatic potential near the Tr atom in the plane of the aromatic ring. This σ‐hole can interact with an X lone pair of XCCH (X=F, Cl, Br, and I) to form a triel bond (TrB). The interaction energy between C5H5Tr and FCCH lies in the range between 2.2 and 4.4 kcal/mol, in the order Tr=B+cation above the ring pulls density toward itself and thus magnifies the Tr σ‐hole. The TrB to the XCCH nucleophile is thereby magnified as is the strength of the TrB. This positive cooperativity is particularly large for Tr=B. 
    more » « less
  2. null (Ed.)
    The syntheses and crystal structures of the two title compounds, C 11 H 10 O 3 ( I ) and C 17 H 14 BrNO 2 ( II ), both containing the bicyclo[2.2.2]octene ring system, are reported here [the structure of I has been reported previously: White & Goh (2014). Private Communication (refcode HOKRIK). CCDC, Cambridge, England]. The bond lengths and angles of the bicyclo[2.2.2]octene ring system are similar for both structures. The imide functional group of II features carbonyl C=O bond lengths of 1.209 (2) and 1.210 (2) Å, with C—N bond lengths of 1.393 (2) and 1.397 (2) Å. The five-membered imide ring is nearly planar, and it is positioned exo relative to the alkene bridgehead carbon atoms of the bicyclo[2.2.2]octene ring system. Non-covalent interactions present in the crystal structure of II include a number of C—H...O interactions. The extended structure of II also features C—H...O hydrogen bonds as well as C—H...π and lone pair–π interactions, which combine together to create supramolecular sheets. 
    more » « less
  3. A convenient approach to obtain Lewis structures for compounds of the type YXn involves first constructing a trial structure that satisfies the valence of the outer atoms (e.g. 1 bond for fluorine, 2 bonds for oxygen and 3 bonds for nitrogen) and placing the molecular charge (if any) on the central atom. The second step involves evaluating the electron count of the central atom, which can give rise to three possibilities: (i) if the central atom has an octet configuration, no change in the number of bonds is required, (ii) if the central atom (Y) exceeds the octet, a Y–X bond is relocated as a lone pair on X, which results in a formal positive charge on Y and a formal negative charge on X, and (iii) if the electron count on the central Y atom is less than an octet, a lone pair on the outer atom is relocated as a Y–X bond, which results in a formal negative charge on Y and a formal positive charge on X; these transformations modify the electron configuration around X such that it will adopt a correct Lewis structure. This approach differs considerably from other methods that require one to first calculate the total number of valence electrons. As such, the method described here, which focuses on using valence as a guiding chemical principle, is much less mathematically oriented and therefore less subject to errors from incorrect calculations. 
    more » « less
  4. A complex is assembled which pairs a carboxyl group of X 1 COOH with a 1,2,5-chalcogenadiazole ring containing substituents on its C atoms. The OH of the carboxyl group donates a proton to a N atom of the ring to form a OH⋯N H-bond (HB), while its carbonyl O engages in a Y⋯O chalcogen bond (ChB) with the ring in which Y = S, Se, Te. The ChB is strengthened by enlarging the size of the Y atom from S to Se to Te. Placement of an electron-withdrawing group (EWG) X 1 on the acid strengthens the HB while weakening the ChB; the reverse occurs when EWGs are placed on the ring. By selection of the proper substituents on the two units, it is possible to achieve a near perfect balance between the strengths of these two bonds. These bond strengths are also reflected in the NMR spectroscopic properties of the chemical shielding of the various atoms and the coupling between the nuclei directly involved in each bond. 
    more » « less
  5. The halogen bond formed by a series of Lewis acids TF 3 X (T = C, Si, Ge, Sn, Pb; X = Cl, Br, I) with NH 3 is studied by quantum chemical calculations. The interaction energy is closely mimicked by the depth of the σ-hole on the X atom as well as the full electrostatic energy. There is a first trend by which the hole is deepened if the T atom to which X is attached becomes more electron-withdrawing: C > Si > Ge > Sn > Pb. On the other hand, larger more polarizable T atoms are better able to transmit the electron-withdrawing power of the F substituents. The combination of these two opposing factors leaves PbF 3 X forming the strongest XBs, followed by CF 3 X, with SiF 3 X engaging in the weakest bonds. The charge transfer from the NH 3 lone pair into the σ*(TX) antibonding orbital tends to elongate the covalent TX bond, and this force is largest for the heavier X and T atoms. On the other hand, the contraction of this bond deepens the σ-hole at the X atom, which would enhance both the electrostatic component and the full interaction energy. This bond-shortening effect is greatest for the lighter X atoms. The combination of these two opposing forces leaves the T–X bond contracting for X = Cl and Br, but lengthening for I. 
    more » « less