A fundamental question that has been studied in cryptography and in information theory is whether two parties can communicate confidentially using exclusively an open channel. We consider the model in which the two parties hold inputs that are correlated in a certain sense. This model has been studied extensively in information theory, and communication protocols have been designed which exploit the correlation to extract from the inputs a shared secret key. However, all the existing protocols are not universal in the sense that they require that the two parties also know some attributes of the correlation. In other words, they require that each party knows something about the other party’s input. We present a protocol that does not require any prior additional information. It uses space-bounded Kolmogorov complexity to measure correlation and it allows the two legal parties to obtain a common key that looks random to an eavesdropper that observes the communication and is restricted to use a bounded amount of space for the attack. Thus the protocol achieves complexity-theoretical security, but it does not use any unproven result from computational complexity. On the negative side, the protocol is not efficient in the sense that the computation of the two legal parties uses more space than the space allowed to the adversary.
more »
« less
Local prediction-learning in high-dimensional spaces enables neural networks to plan
Abstract Planning and problem solving are cornerstones of higher brain function. But we do not know how the brain does that. We show that learning of a suitable cognitive map of the problem space suffices. Furthermore, this can be reduced to learning to predict the next observation through local synaptic plasticity. Importantly, the resulting cognitive map encodes relations between actions and observations, and its emergent high-dimensional geometry provides a sense of direction for reaching distant goals. This quasi-Euclidean sense of direction provides a simple heuristic for online planning that works almost as well as the best offline planning algorithms from AI. If the problem space is a physical space, this method automatically extracts structural regularities from the sequence of observations that it receives so that it can generalize to unseen parts. This speeds up learning of navigation in 2D mazes and the locomotion with complex actuator systems, such as legged bodies. The cognitive map learner that we propose does not require a teacher, similar to self-attention networks (Transformers). But in contrast to Transformers, it does not require backpropagation of errors or very large datasets for learning. Hence it provides a blue-print for future energy-efficient neuromorphic hardware that acquires advanced cognitive capabilities through autonomous on-chip learning.
more »
« less
- Award ID(s):
- 2318152
- PAR ID:
- 10570627
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kiebel, Stefan (Ed.)Sensory processing is hard because the variables of interest are encoded in spike trains in a relatively complex way. A major goal in studies of sensory processing is to understand how the brain extracts those variables. Here we revisit a common encoding model in which variables are encoded linearly. Although there are typically more variables than neurons, this problem is still solvable because only a small number of variables appear at any one time (sparse prior). However, previous solutions require all-to-all connectivity, inconsistent with the sparse connectivity seen in the brain. Here we propose an algorithm that provably reaches the MAP (maximuma posteriori) inference solution, but does so using sparse connectivity. Our algorithm is inspired by the circuit of the mouse olfactory bulb, but our approach is general enough to apply to other modalities. In addition, it should be possible to extend it to nonlinear encoding models.more » « less
-
Contemporary approaches to perception, planning, estimation, and control have allowed robots to operate robustly as our remote surrogates in uncertain, unstructured environments. This progress now creates an opportunity for robots to operate not only in isolation, but also with and alongside humans in our complex environments. Realizing this opportunity requires an efficient and flexible medium through which humans can communicate with collaborative robots. Natural language provides one such medium, and through significant progress in statistical methods for natural-language understanding, robots are now able to interpret a diverse array of free-form navigation, manipulation, and mobile-manipulation commands. However, most contemporary approaches require a detailed, prior spatial-semantic map of the robot’s environment that models the space of possible referents of an utterance. Consequently, these methods fail when robots are deployed in new, previously unknown, or partially-observed environments, particularly when mental models of the environment differ between the human operator and the robot. This paper provides a comprehensive description of a novel learning framework that allows field and service robots to interpret and correctly execute natural-language instructions in a priori unknown, unstructured environments. Integral to our approach is its use of language as a “sensor”—inferring spatial, topological, and semantic information implicit in natural-language utterances and then exploiting this information to learn a distribution over a latent environment model. We incorporate this distribution in a probabilistic, language grounding model and infer a distribution over a symbolic representation of the robot’s action space, consistent with the utterance. We use imitation learning to identify a belief-space policy that reasons over the environment and behavior distributions. We evaluate our framework through a variety of different navigation and mobile-manipulation experiments involving an unmanned ground vehicle, a robotic wheelchair, and a mobile manipulator, demonstrating that the algorithm can follow natural-language instructions without prior knowledge of the environment.more » « less
-
Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, JM. (Ed.)The problem of action localization involves locating the action in the video, both over time and spatially in the image. The current dominant approaches use supervised learning to solve this problem. They require large amounts of annotated training data, in the form of frame-level bounding box annotations around the region of interest. In this paper, we present a new approach based on continual learning that uses feature-level predictions for self-supervision. It does not require any training annotations in terms of frame-level bounding boxes. The approach is inspired by cognitive models of visual event perception that propose a prediction-based approach to event understanding. We use a stack of LSTMs coupled with a CNN encoder, along with novel attention mechanisms, to model the events in the video and use this model to predict high-level features for the future frames. The prediction errors are used to learn the parameters of the models continuously. This self-supervised framework is not complicated as other approaches but is very effective in learning robust visual representations for both labeling and localization. It should be noted that the approach outputs in a streaming fashion, requiring only a single pass through the video, making it amenable for real-time processing. We demonstrate this on three datasets - UCF Sports, JHMDB, and THUMOS’13 and show that the proposed approach outperforms weakly-supervised and unsupervised baselines and obtains competitive performance compared to fully supervised baselines. Finally, we show that the proposed framework can generalize to egocentric videos and achieve state-of-the-art results on the unsupervised gaze prediction task.more » « less
-
As we strive to establish a long-term presence in space, it is crucial to plan large-scale space missions and campaigns with future uncertainties in mind. However, integrated space mission planning, which simultaneously considers mission planning and spacecraft design, faces significant challenges when dealing with uncertainties; this problem is formulated as a stochastic mixed integer nonlinear program (MINLP), and solving it using the conventional method would be computationally prohibitive for realistic applications. Extending a deterministic decomposition method from our previous work, we propose a novel and computationally efficient approach for integrated space mission planning under uncertainty. The proposed method effectively combines the Alternating Direction Method of Multipliers (ADMM)-based decomposition framework from our previous work, robust optimization, and two-stage stochastic programming (TSSP).This hybrid approach first solves the integrated problem deterministically, assuming the worst scenario, to precompute the robust spacecraft design. Subsequently, the two-stage stochastic program is solved for mission planning, effectively transforming the problem into a more manageable mixed-integer linear program (MILP). This approach significantly reduces computational costs compared to the exact method, but may potentially miss solutions that the exact method might find. We examine this balance through a case study of staged infrastructure deployment on the lunar surface under future demand uncertainty. When comparing the proposed method with a fully coupled benchmark, the results indicate that our approach can achieve nearly identical objective values (no worse than 1% in solved problems) while drastically reducing computational costs.more » « less
An official website of the United States government

