skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D‐printed 4‐zone Ka‐band Fresnel lens: design, fabrication, and measurement
A planar and thin‐grooved Fresnel lens is a great candidate for gain enhancement in millimetre wave communication, imaging systems, and wireless power transfer applications. The authors report the design, fabrication, and measurement of a 3D‐printed Fresnel lens, using a single material. A low‐profile (1.2λthick) 4‐zone Fresnel lens with 16 annular rings is designed with a focal length of 40 mm (≃4λ) operating at 30 GHz. Authors’ design consists of four‐step heights with outer radius of 69 mm (6.9λ). Permittivity and loss tangent of polylactic acid are measured to be 2.79 and 0.0048 at 30 GHz, respectively. Focusing ability of the lens is studied using full‐wave simulation. The lens is fabricated using a table‐top commercial fused deposition modelling printer. The surface roughness, step heights, and radii of each zone are measured and verified using a 3D optical profilometer. Impact of the 3D‐printed limitation on performance of the device is discussed. The gain of the fabricated prototype is measured, in conjunction with a horn antenna, in an anechoic chamber. Pattern measurement results illustrate 6.6 dB gain enhancement at broadside at 30 GHz. Gain enhancing behaviour is studied at three different focal lengths and frequencies of 29–31 GHz.  more » « less
Award ID(s):
1711102
PAR ID:
10570743
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1049
Date Published:
Journal Name:
IET Microwaves, Antennas & Propagation
Volume:
14
Issue:
1
ISSN:
1751-8725
Format(s):
Medium: X Size: p. 28-35
Size(s):
p. 28-35
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, a metamaterial-based LTCC compressed Luneburg lens was designed, manufactured and measured. The lens was designed at 60 GHz to utilize the unlicensed mm-wave spectrum available for short-range high-capacity wireless communication networks. The transformation optics method was applied to ensure the compression of the Luneburg lens antenna and thus maintain a low-profile structure. The two different types of unit cells for low and high permittivity regions were considered. The parametric study of the effect of compression on lens performance was presented. The antenna is implemented with a standard high-permittivity LTCC process, and details of the manufacturing process for the metamaterial lens are discussed. The low-profile lens is thinner than 2 mm and measures 19 mm in diameter. A size reduction of 63.6% in comparison with a spherical lens was achieved. The near-field to far-field mm-wave measurement technique is presented, and the measurement results show a peak antenna gain of 16 dBi at 60 GHz and a beam-scanning capacity with 1 dB scan loss within a 50° field of view. 
    more » « less
  2. This paper presents a fully 3D-printed wideband mm-wave beam-steering antenna concept capable of performing wide-angle electronic beam-steering by making use of zigzagged lens antenna subarrays (LASs) with curved focal surfaces. The concept is demonstrated through the design and realization of a 38 GHz antenna consisting of L=4 dielectric slab waveguide (DSW) lenses each fed with structurally embedded M=6 TEM horn antennas, which can effectively reduce the required number of phase shifters (PSs) from N=M×L=24 to L=4 . It is demonstrated that the joint utilization of zigzagged LAS and curved focal surfaces with structurally integrated TEM horn antennas, all enabled through the design flexibilities offered by the emerging additive manufacturing (AM) technology, improves the realized gain, side lobe level (SLL), and beam-steering range in comparison to the earlier versions realized with planar focal surfaces. Specifically, the antenna exhibits a simulated realized gain of 16.5 dBi with an H-plane beam-steering range exceeding ±45° and a half-power beamwidth (HPBW) of 4.5° while maintaining an SLL below –9.3 dB across the entirety of the scan range. Measurements taken with the manufactured antenna prototype show excellent agreement with the performance obtained from full-wave simulations. 
    more » « less
  3. A new lens capability for three-dimensional (3D) focal control is presented using an optofluidic system consisting ofn × narrayed liquid prisms. Each prism module contains two immiscible liquids in a rectangular cuvette. Using the electrowetting effect, the shape of the fluidic interface can be rapidly adjusted to create its straight profile with the prism’s apex angle. Consequently, an incoming ray is steered at the tilted interface due to the refractive index difference between two liquids. To achieve 3D focal control, individual prisms in the arrayed system are simultaneously modulated, allowing incoming light rays to be spatially manipulated and converged on a focal point located atPfocal(fx,fy,fz) in 3D space. Analytical studies were conducted to precisely predict the prism operation required for 3D focal control. Using three liquid prisms positioned on thex-,y-, and 45°-diagonal axes, we experimentally demonstrated 3D focal tunability of the arrayed optofluidic system, achieving focal tuning along lateral, longitudinal, and axial directions as wide as 0 ≤ fx ≤ 30 mm, 0 ≤ fy ≤ 30 mm, and 500 mm ≤ fz ≤ ∞. This focal tunability of the arrayed system allows for 3D control of the lens’s focusing power, which could not be attained by solid-type optics without the use of bulky and complex mechanical moving components. This innovative lens capability for 3D focal control has potential applications in eye-movement tracking for smart displays, autofocusing of smartphone cameras, or solar tracking for smart photovoltaic systems. 
    more » « less
  4. null (Ed.)
    Abstract Practically applied techniques for ultrasonic biomedical imaging employ delay-and-sum (DAS) beamforming which can resolve two objects down to 2.1 λ within the acoustic Fresnel zone. Here, we demonstrate a phononic metamaterial lens (ML) for detection of laterally subwavelength object features in tissue-like phantoms beyond the phononic crystal evanescent zone and Fresnel zone of the emitter. The ML produces metamaterial collimation that spreads 8x less than the emitting transducer. Utilizing collimation, 3.6x greater lateral resolution beyond the Fresnel zone limit was achieved. Both hard objects and tissue approximating masses were examined in gelatin tissue phantoms near the Fresnel zone limit. Lateral dimensions and separation were resolved down to 0.50 λ for hard objects, with tissue approximating masses slightly higher at 0.73 λ . The work represents the application of a metamaterial for spatial characterization, and subwavelength resolution in a biosystem beyond the Fresnel zone limit. 
    more » « less
  5. We present a step-by-step approach for designing a recofigurable Alford loop antenna (RALA). The design of an 3.5 GHz RALA is shown. The antenna is fabricated using a 1.6 mm thick double-sided FR4 substrate. We sweep antenna geometrical parameters and show the effect on antenna input impedance, reflection coefficient (S 11 ), and radiation patterns. The final antenna structure resonates at 3.5 GHz with eight directional and one omnidirectional radiation patterns. We also present a simplistic control circuit responsible for activating the antenna elements. Tri-state impedance matching- a major challenge in the design of RALA is also discussed and analyzed along with a proposed method for mitigation. 3D radiation patterns of the RALA was measured using an EMScan and a maximum gain of 4.5 dBi is found. 
    more » « less