skip to main content


Title: Sub-wavelength lateral detection of tissue-approximating masses using an ultrasonic metamaterial lens
Abstract Practically applied techniques for ultrasonic biomedical imaging employ delay-and-sum (DAS) beamforming which can resolve two objects down to 2.1 λ within the acoustic Fresnel zone. Here, we demonstrate a phononic metamaterial lens (ML) for detection of laterally subwavelength object features in tissue-like phantoms beyond the phononic crystal evanescent zone and Fresnel zone of the emitter. The ML produces metamaterial collimation that spreads 8x less than the emitting transducer. Utilizing collimation, 3.6x greater lateral resolution beyond the Fresnel zone limit was achieved. Both hard objects and tissue approximating masses were examined in gelatin tissue phantoms near the Fresnel zone limit. Lateral dimensions and separation were resolved down to 0.50 λ for hard objects, with tissue approximating masses slightly higher at 0.73 λ . The work represents the application of a metamaterial for spatial characterization, and subwavelength resolution in a biosystem beyond the Fresnel zone limit.  more » « less
Award ID(s):
1741677
NSF-PAR ID:
10204085
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The square lattice phononic crystal (PnC) has been used extensively to demonstrate metamaterial effects. Here, positive and negative refraction and reflection are observed simultaneously due to the presence of Umklapp scattering of sound at the surface of PnC and square-like equifrequency contours (EFCs). It is found that a shift in the EFC of the third transmission band away from the center of the Brillouin zone results in an effectively inverted EFC. The overlap of the EFC of the second and third band produce quasimomentum-matching conditions that lead to multi-refringence phenomena from a single incident beam without the introduction of defects into the lattice. Additionally, the coupling of a near-normal incident wave to a propagating almost perpendicular Bloch mode is shown to lead to strong right-angle redirection and collimation of the incident acoustic beam. Each effect is demonstrated both numerically and experimentally for scattering of ultrasound at a 10-period PnC slab in water environment. 
    more » « less
  2. Metamaterials are engineered periodic structures designed to have unique properties not encountered in naturally occurring materials. One such unusual property of metamaterials is the ability to exhibit negative refractive index over a prescribed range of frequencies. A lens made of negative refractive index metamaterials can achieve resolution beyond the diffraction limit. This paper presents the design of a metamaterial lens and its use in far-field microwave imaging for subwavelength defect detection in nondestructive evaluation (NDE). Theoretical formulation and numerical studies of the metamaterial lens design are presented followed by experimental demonstration and characterization of metamaterial behavior. Finally, a microwave homodyne receiver-based system is used in conjunction with the metamaterial lens to develop a far-field microwave NDE sensor system. A subwavelength focal spot of size 0.82λ was obtained. The system is shown to be sensitive to a defect of size 0.17λ × 0.06λ in a Teflon sample. Consecutive positions of the defect with a separation of 0.23λ was resolvable using the proposed system. 
    more » « less
  3. Abstract The collimation of relativistic jets launched from the vicinity of supermassive black holes (SMBHs) at the centers of active galactic nuclei (AGNs) is one of the key questions to understand the nature of AGN jets. However, little is known about the detailed jet structure for AGN like quasars since very high angular resolutions are required to resolve these objects. We present very long baseline interferometry (VLBI) observations of the archetypical quasar 3C 273 at 86 GHz, performed with the Global Millimeter VLBI Array, for the first time including the Atacama Large Millimeter/submillimeter Array. Our observations achieve a high angular resolution down to ∼60 μ as, resolving the innermost part of the jet ever on scales of ∼10 5 Schwarzschild radii. Our observations, including close-in-time High Sensitivity Array observations of 3C 273 at 15, 22, and 43 GHz, suggest that the inner jet collimates parabolically, while the outer jet expands conically, similar to jets from other nearby low-luminosity AGNs. We discovered the jet collimation break around 10 7 Schwarzschild radii, providing the first compelling evidence for structural transition in a quasar jet. The location of the collimation break for 3C 273 is farther downstream from the sphere of gravitational influence (SGI) from the central SMBH. With the results for other AGN jets, our results show that the end of the collimation zone in AGN jets is governed not only by the SGI of the SMBH but also by the more diverse properties of the central nuclei. 
    more » « less
  4. Jelena Vuckovic (Ed.)
    On-chip broadband optical spectrometers that cover the entire tissue transparency window (λ = 650–1050 nm) with high resolution are highly demanded for miniaturized biosensing and bioimaging applications. The standard spatial heterodyne Fourier transform spectrometer (SHFTS) requires a large number of Mach–Zehnder interferometer (MZI) arrays to obtain a broad spectral bandwidth while maintaining high resolution. Here, we propose a novel type of SHFTS integrated with a subwavelength grating coupler (SWGC) for the dual-polarization bandpass sampling on the Si3N4 platform to solve the intrinsic trade-off limitation between the bandwidth and resolution of the SHFTS without having an outrageous number of MZI arrays or adding additional active photonic components. By applying the bandpass sampling theorem, the continuous broadband input spectrum is divided into multiple narrow-band channels through tuning the phase-matching condition of the SWGC with different polarization and coupling angles. Thereby, it is able to reconstruct each band separately far beyond the Nyquist criterion without aliasing error or degrading the resolution. We experimentally demonstrated the broadband spectrum retrieval results with the overall bandwidth coverage of 400 nm, bridging the wavelengths from 650 to 1050 nm, with a resolution of 2–5 nm. The bandpass sampling SHFTS is designed to have 32 linearly unbalanced MZIs with the maximum optical path length difference of 93 μm within an overall footprint size of 4.7 mm × 0.65 mm, and the coupling angles of SWGC are varied from 0° to 32° to cover the entire tissue transparency window. 
    more » « less
  5. Multiphoton fluorescence microscopy enables deepin vivoimaging by using long excitation wavelengths to increase the penetration depth of ballistic photons and nonlinear excitation to suppress the out-of-focus fluorescence. However, the imaging depth of multiphoton microscopy is limited by tissue scattering and absorption. This fundamental depth limit for two-photon microscopy has been studied theoretically and experimentally. Long wavelength three-photon fluorescence microscopy was developed to image beyond the depth limit of two-photon microscopy and has achieved unprecedentedin vivoimaging depth. Here we extend the theoretical framework for characterizing the depth limit of two-photon microscopy to three-photon microscopy. We further verify the theoretical predictions with experimental results from tissue phantoms. We demonstrate experimentally that high spatial resolution diffraction-limited imaging at a depth of 10 scattering mean free paths, which is nearly twice the transport mean free path, is possible with multiphoton microscopy. Our results indicate that the depth limit of three-photon microscopy is significantly beyond what has been achieved in biological tissues so far, and further technological development is required to reach the full potential of three-photon microscopy.

     
    more » « less