Metamaterials are engineered periodic structures designed to have unique properties not encountered in naturally occurring materials. One such unusual property of metamaterials is the ability to exhibit negative refractive index over a prescribed range of frequencies. A lens made of negative refractive index metamaterials can achieve resolution beyond the diffraction limit. This paper presents the design of a metamaterial lens and its use in far-field microwave imaging for subwavelength defect detection in nondestructive evaluation (NDE). Theoretical formulation and numerical studies of the metamaterial lens design are presented followed by experimental demonstration and characterization of metamaterial behavior. Finally, a microwave homodyne receiver-based system is used in conjunction with the metamaterial lens to develop a far-field microwave NDE sensor system. A subwavelength focal spot of size 0.82λ was obtained. The system is shown to be sensitive to a defect of size 0.17λ × 0.06λ in a Teflon sample. Consecutive positions of the defect with a separation of 0.23λ was resolvable using the proposed system.
more »
« less
Sub-wavelength lateral detection of tissue-approximating masses using an ultrasonic metamaterial lens
Abstract Practically applied techniques for ultrasonic biomedical imaging employ delay-and-sum (DAS) beamforming which can resolve two objects down to 2.1 λ within the acoustic Fresnel zone. Here, we demonstrate a phononic metamaterial lens (ML) for detection of laterally subwavelength object features in tissue-like phantoms beyond the phononic crystal evanescent zone and Fresnel zone of the emitter. The ML produces metamaterial collimation that spreads 8x less than the emitting transducer. Utilizing collimation, 3.6x greater lateral resolution beyond the Fresnel zone limit was achieved. Both hard objects and tissue approximating masses were examined in gelatin tissue phantoms near the Fresnel zone limit. Lateral dimensions and separation were resolved down to 0.50 λ for hard objects, with tissue approximating masses slightly higher at 0.73 λ . The work represents the application of a metamaterial for spatial characterization, and subwavelength resolution in a biosystem beyond the Fresnel zone limit.
more »
« less
- Award ID(s):
- 1741677
- PAR ID:
- 10204085
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The square lattice phononic crystal (PnC) has been used extensively to demonstrate metamaterial effects. Here, positive and negative refraction and reflection are observed simultaneously due to the presence of Umklapp scattering of sound at the surface of PnC and square-like equifrequency contours (EFCs). It is found that a shift in the EFC of the third transmission band away from the center of the Brillouin zone results in an effectively inverted EFC. The overlap of the EFC of the second and third band produce quasimomentum-matching conditions that lead to multi-refringence phenomena from a single incident beam without the introduction of defects into the lattice. Additionally, the coupling of a near-normal incident wave to a propagating almost perpendicular Bloch mode is shown to lead to strong right-angle redirection and collimation of the incident acoustic beam. Each effect is demonstrated both numerically and experimentally for scattering of ultrasound at a 10-period PnC slab in water environment.more » « less
-
Abstract The collimation of relativistic jets launched from the vicinity of supermassive black holes (SMBHs) at the centers of active galactic nuclei (AGNs) is one of the key questions to understand the nature of AGN jets. However, little is known about the detailed jet structure for AGN like quasars since very high angular resolutions are required to resolve these objects. We present very long baseline interferometry (VLBI) observations of the archetypical quasar 3C 273 at 86 GHz, performed with the Global Millimeter VLBI Array, for the first time including the Atacama Large Millimeter/submillimeter Array. Our observations achieve a high angular resolution down to ∼60 μ as, resolving the innermost part of the jet ever on scales of ∼10 5 Schwarzschild radii. Our observations, including close-in-time High Sensitivity Array observations of 3C 273 at 15, 22, and 43 GHz, suggest that the inner jet collimates parabolically, while the outer jet expands conically, similar to jets from other nearby low-luminosity AGNs. We discovered the jet collimation break around 10 7 Schwarzschild radii, providing the first compelling evidence for structural transition in a quasar jet. The location of the collimation break for 3C 273 is farther downstream from the sphere of gravitational influence (SGI) from the central SMBH. With the results for other AGN jets, our results show that the end of the collimation zone in AGN jets is governed not only by the SGI of the SMBH but also by the more diverse properties of the central nuclei.more » « less
-
A planar and thin‐grooved Fresnel lens is a great candidate for gain enhancement in millimetre wave communication, imaging systems, and wireless power transfer applications. The authors report the design, fabrication, and measurement of a 3D‐printed Fresnel lens, using a single material. A low‐profile (1.2λthick) 4‐zone Fresnel lens with 16 annular rings is designed with a focal length of 40 mm (≃4λ) operating at 30 GHz. Authors’ design consists of four‐step heights with outer radius of 69 mm (6.9λ). Permittivity and loss tangent of polylactic acid are measured to be 2.79 and 0.0048 at 30 GHz, respectively. Focusing ability of the lens is studied using full‐wave simulation. The lens is fabricated using a table‐top commercial fused deposition modelling printer. The surface roughness, step heights, and radii of each zone are measured and verified using a 3D optical profilometer. Impact of the 3D‐printed limitation on performance of the device is discussed. The gain of the fabricated prototype is measured, in conjunction with a horn antenna, in an anechoic chamber. Pattern measurement results illustrate 6.6 dB gain enhancement at broadside at 30 GHz. Gain enhancing behaviour is studied at three different focal lengths and frequencies of 29–31 GHz.more » « less
-
There is a long-existing trade-off between the imaging resolution and penetration depth in acoustic imaging caused by the diffraction limit. Most existing approaches addressing this trade-off require controlled “labels,” i.e., metamaterials or contrast agents, to be deposited close to the objects and to either remain static or be tracked precisely during imaging. We propose a “blind-label” approach for acoustic subwavelength imaging. The blind labels are randomly distributed acoustic scatterers with deep-subwavelength sizes whose exact locations and trajectories are not necessary information in image reconstruction. The proposed method achieves the resolution of 0.24 wavelengths in ultrasound imaging experiments and 0.2 wavelengths in simulations, providing over 10 times improvement compared to the diffraction limit. We also elucidate the influence of scatterer size and concentration on imaging performance. The proposed “blind-label” approach relaxes the restrictions of existing acoustic subwavelength imaging technologies relying on controlled labels, therefore substantially improving the practicality of acoustic subwavelength imaging in biomedical ultrasound imaging, sonar, and nondestructive testing.more » « less
An official website of the United States government

