skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Modeling Climate and Tectonic Controls on Bias in Measured River Incision Rates
Rates of land surface processes provide insights into climatic and tectonic influences on topography. Bedrock incision rates are estimated by dating perched landforms such as strath terraces, assuming a constant bedrock incision rate from terrace abandonment to the next terrace level or present river level. These estimates express biases from the stochastic nature of sediment and water discharge in controlling river incision as well as from using a mobile channel elevation as a reference frame, leading to different incision rates when calculated over different timeframes. We introduce a 1‐D model incorporating fluvial mechanics, tectonics, sediment, and climate variability to predict these biases and assess their sensitivity to climate and tectonics. Findings suggest biases intensify under highly variable climates and slow rock uplift, with climate periodicity being a primary control for our modeled scenarios. Our model provides a mechanism to improve river incision measurement uncertainty, impacting paleoclimate and tectonic geomorphology reconstructions.  more » « less
Award ID(s):
2123412
PAR ID:
10570872
Author(s) / Creator(s):
;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract River terraces are commonly used to infer climate and tectonic histories. Yet, it is increasingly recognised that other processes, such as river capture, can affect river terrace genesis and incision rates and patterns. In this study, we conduct a field‐based investigation of river terrace sequences along the Kolokithas and Varitis Rivers in central Crete, Greece, that share a confluence and preserve geomorphic evidence for the recent capture of the Kolokithas headwaters by the Varitis. We use digital topographic analysis, mapping, and optically stimulated luminescence (OSL) geochronology to quantify the river terrace and bedrock incision response to river capture. Topographic analysis indicates the Varitis captured ~30 km2of drainage area from the Kolokithas. We find differences in terrace characteristics, number of terraces, and incision rates and patterns on the adjacent valleys. The Kolokithas has four terrace levels, and the Varitis has five. All terraces are strath terraces, except for the oldest on the Kolokithas, a ~8 m thick fill terrace that starkly contrasts the time‐equivalent ~1–2 m thick strath terrace on the Varitis. Relative and absolute age control suggests three Pleistocene terraces were emplaced during cooler climate intervals, and two Holocene terraces are perhaps because of anthropogenic disturbances. The incision patterns differ on each valley, with generally more incision upstream on the Varitis relative to the Kolokithas. Incision rates on the Varitis are roughly twice as high as on the Kolokithas, but the average incision rate of both valleys combined is comparable to coastal rock uplift rates derived from marine terraces. Collectively, our results suggest that fluvial systems are sensitive to climate and tectonic processes even when affected by geomorphic disturbances, like river capture and beheading. However, care must be taken when interpreting river terraces as direct records of climate and tectonic processes, particularly when working on a single river valley. 
    more » « less
  2. Abstract Bedrock rivers are the pacesetters of landscape evolution in uplifting fluvial landscapes. Water discharge variability and sediment transport are important factors influencing bedrock river processes. However, little work has focused on the sensitivity of hillslope sediment supply to precipitation events and its implications on river evolution in tectonically active landscapes. We model the temporal variability of water discharge and the sensitivity of sediment supply to precipitation events as rivers evolve to equilibrium over 106model years. We explore how coupling sediment supply sensitivity with discharge variability influences rates and timing of river incision across climate regimes. We find that sediment supply sensitivity strongly impacts which water discharge events are the most important in driving river incision and modulates channel morphology. High sediment supply sensitivity focuses sediment delivery into the largest river discharge events, decreasing rates of bedrock incision during floods by orders of magnitude as rivers are inundated with new sediment that buries bedrock. The results show that the use of river incision models in which incision rates increase monotonically with increasing river discharge may not accurately capture bedrock river dynamics in all landscapes, particularly in steep landslide prone landscapes. From our modeling results, we hypothesize the presence of an upper discharge threshold for river incision at which storms transition from being incisional to depositional. Our work illustrates that sediment supply sensitivity must be accounted for to predict river evolution in dynamic landscapes. Our results have important implications for interpreting and predicting climatic and tectonic controls on landscape morphology and evolution. 
    more » « less
  3. null (Ed.)
    Abstract. Landslides are the main source of sediment in most mountain ranges. Rivers then act as conveyor belts, evacuating landslide-derived sediment. Sediment dynamics are known to influence landscape evolution through interactions among landslide sediment delivery, fluvial transport and river incision into bedrock. Sediment delivery and its interaction with river incision therefore control the pace of landscape evolution and mediate relationships among tectonics, climate and erosion. Numerical landscape evolution models (LEMs) are well suited to study the interactions among these surface processes. They enable evaluation of a range of hypotheses at varying temporal and spatial scales. While many models have been used to study the dynamic interplay between tectonics, erosion and climate, the role of interactions between landslide-derived sediment and river incision has received much less attention. Here, we present HyLands, a hybrid landscape evolution model integrated within the TopoToolbox Landscape Evolution Model (TTLEM) framework. The hybrid nature of the model lies in its capacity to simulate both erosion and deposition at any place in the landscape due to fluvial bedrock incision, sediment transport, and rapid, stochastic mass wasting through landsliding. Fluvial sediment transport and bedrock incision are calculated using the recently developed Stream Power with Alluvium Conservation and Entrainment (SPACE) model. Therefore, rivers can dynamically transition from detachment-limited to transport-limited and from bedrock to bedrock–alluvial to fully alluviated states. Erosion and sediment production by landsliding are calculated using a Mohr–Coulomb stability analysis, while landslide-derived sediment is routed and deposited using a multiple-flow-direction, nonlinear deposition method. We describe and evaluate the HyLands 1.0 model using analytical solutions and observations. We first illustrate the functionality of HyLands to capture river dynamics ranging from detachment-limited to transport-limited conditions. Second, we apply the model to a portion of the Namche Barwa massif in eastern Tibet and compare simulated and observed landslide magnitude–frequency and area–volume scaling relationships. Finally, we illustrate the relevance of explicitly simulating landsliding and sediment dynamics over longer timescales for landscape evolution in general and river dynamics in particular. With HyLands we provide a new tool to understand both the long- and short-term coupling between stochastic hillslope processes, river incision and source-to-sink sediment dynamics. 
    more » « less
  4. Abstract In most landscape evolution models, extreme rainfall enhances river incision. In steep landscapes, however, these events trigger landslides that can buffer incision via increased sediment delivery and aggradation. We quantify landslide sediment aggradation and erosional buffering with a natural experiment in southern Taiwan where a northward gradient in tectonic activity drives increasing landscape steepness. We find that landscape response to extreme rainfall during the 2009 typhoon Morakot varied along this gradient, where steep areas experienced widespread channel sediment aggradation of >10 m and less steep areas did not noticeably aggrade. We model sediment export to estimate a sediment removal timeline and find that steep, tectonically active areas with the most aggradation may take centuries to resume bedrock incision. Expected sediment cover duration reflects tectonic uplift. We find that despite high stream power, sediment cover may keep steep channels from eroding bedrock for up to half of a given time period. This work highlights the importance of dynamic sediment cover in landscape evolution and suggests a mechanism by which erosional efficiency in tectonically active landscapes may decrease as landscape steepness increases. 
    more » « less
  5. 40Ar/39Ar detrital sanidine (DS) dating of river terraces provides new insights into the evolution and bedrock incision history of the San Juan River, a major tributary of the Colorado River, USA, at the million-year time scale. We dated terrace flights from the San Juan−Colorado River confluence to the San Juan Rocky Mountains. We report >5700 40Ar/ 39Ar dates on single DS grains from axial river facies within several meters above the straths of 30 individual terraces; these yielded ∼2.5% young (<2 Ma) grains that constrain maximum depositional ages (MDAs) and minimum incision rates. The most common young grains were from known caldera eruptions: 0.63 Ma grains derived from the Yellowstone Lava Creek B eruption, and 1.23 Ma and 1.62 Ma grains derived from two Jemez Mountains eruptions in New Mexico. Agreement of a DS-derived MDA age with a refined cosmogenic burial age from Bluff, Utah, indicates that the DS MDA closely approximates the true depositional age in some cases. In a given reach, terraces with ca. 0.6 Ma grains are commonly about half as high above the river as those with ca. 1.2 Ma grains, suggesting that the formation of the terrace flights likely tracks near-steady bedrock incision over the past 1.2 Ma. Longitudinal profile analysis of the San Juan River system shows variation in area-normalized along-stream gradients: a steeper (ksn = 150) reach near the confluence with the Colorado River, a shallower gradient (ksn = 70) in the central Colorado Plateau, and steeper (ksn = 150) channels in the upper Animas River basin. These reaches all show steady bedrock incision, but rates vary by >100 m/Ma, with 247 m/Ma at the San Juan−Colorado River confluence, 120−164 m/Ma across the core of the Colorado Plateau, and 263 m/Ma in the upper Animas River area of the San Juan Mountains. The combined dataset suggests that the San Juan River system is actively adjusting to base-level fall at the Colorado River confluence and to the uplift of the San Juan Mountains headwaters relative to the core of the Colorado Plateau. These fluvial adjustments are attributed to ongoing mantle-driven differential epeirogenic uplift that is shaping the San Juan River system as well as rivers and landscapes elsewhere in the western United States. 
    more » « less