Vision-based sensing, when utilized in conjunction with camera-equipped unmanned aerial vehicles (UAVs), has recently emerged as an effective sensing technique in a variety of civil engineering applications (e.g., construction monitoring, conditional assessment, and post-disaster reconnaissance). However, the use of these non-intrusive sensing techniques for extracting the dynamic response of structures has been restricted due to the perspective and scale distortions or image misalignments caused by the movement of the UAV and its on-board camera during flight operations. To overcome these limitations, a vision-based analysis methodology is proposed in the present study for extracting the dynamic response of structures using unmanned aerial vehicle (UAV) aerial videos. Importantly, geo-referenced targets were strategically placed on the structures and the background (stationary) region to enhance the robustness and accuracy related to image feature detection. Image processing and photogrammetric techniques are adopted in the analysis procedures first to recover the camera motion using the world-to-image correspondences of the background (stationary) targets and subsequently to extract the dynamic structural response by reprojecting the image feature of the (moving) targets attached to the structures to the world coordinates. The displacement tracking results are validated using the responses of two full-scale test structures measured by analog displacement sensors during a sequence of shake table tests. The high level of precision (less than 3 mm root-mean-square errors) of the vision-based structural displacement results demonstrates the effectiveness of the proposed UAV displacement tracking methodology. Additionally, the limitations and potential solutions associated with the proposed methodology for monitoring the dynamic responses of real structures are discussed.
more »
« less
This content will become publicly available on February 1, 2026
Application Framework and Optimal Features for UAV-Based Earthquake-Induced Structural Displacement Monitoring
Unmanned aerial vehicle (UAV) vision-based sensing has become an emerging technology for structural health monitoring (SHM) and post-disaster damage assessment of civil infrastructure. This article proposes a framework for monitoring structural displacement under earthquakes by reprojecting image points obtained courtesy of UAV-captured videos to the 3-D world space based on the world-to-image point correspondences. To identify optimal features in the UAV imagery, geo-reference targets with various patterns were installed on a test building specimen, which was then subjected to earthquake shaking. A feature point tracking-based algorithm for square checkerboard patterns and a Hough Transform-based algorithm for concentric circular patterns are developed to ensure reliable detection and tracking of image features. Photogrammetry techniques are applied to reconstruct the 3-D world points and extract structural displacements. The proposed methodology is validated by monitoring the displacements of a full-scale 6-story mass timber building during a series of shake table tests. Reasonable accuracy is achieved in that the overall root-mean-square errors of the tracking results are at the millimeter level compared to ground truth measurements from analog sensors. Insights on optimal features for monitoring structural dynamic response are discussed based on statistical analysis of the error characteristics for the various reference target patterns used to track the structural displacements.
more »
« less
- Award ID(s):
- 2120683
- PAR ID:
- 10571021
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Algorithms
- Volume:
- 18
- Issue:
- 2
- ISSN:
- 1999-4893
- Page Range / eLocation ID:
- 66
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The advancement of 3D modeling applications in various domains has been significantly propelled by innovations in 3D computer vision models. However, the efficacy of these models, particularly in large-scale 3D reconstruction, depends on the quality and coverage of the viewpoints. This paper addresses optimizing the trajectory of an unmanned aerial vehicle (UAV) to collect optimal Next-Best View (NBV) for 3D reconstruction models. Unlike traditional methods that rely on predefined criteria or continuous tracking of the 3D model’s development, our approach leverages reinforcement learning to select the NBV based solely on single camera images and the relative positions of the UAV with the reference points to a target. The UAV is positioned with respect to four reference waypoints at the structure’s corners, maintaining its orientation (field of view) towards the structure. Our approach removes the need for constant monitoring of 3D reconstruction accuracy during policy learning, ultimately boosting both the efficiency and autonomy of the data collection process. The implications of this research extend to applications in inspection, surveillance, and mapping, where optimal viewpoint selection is crucial for information gain and operational efficiency.more » « less
-
null (Ed.)The main objective of an unmanned aerial vehicle (UAV) path planning is to generate a flight path that links a start point to an endpoint in an indoor space avoiding obstacles. Path planning is essential for many real-life applications such as an autonomous car, surveillance mission, farming robots, unmanned aerial vehicles package delivery, space exploration, and many others. To create an optimal path, we need to adopt a specific criterion to minimize the distance the UAV must travel such as the Euclidean distance. In this paper, we provide our initial idea of creating an optimal path for indoor UAV using both A* and the Late Acceptance Hill Climbing (LAHC) algorithms. We are adopting an indoor search environment with various complexity and utilize the Probabilistic Roadmap algorithm (PRM) as a search space for both algorithms. The basic idea following PRM is to generate random sample points in the space and search these points for an optimal path. The developed results show that the LAHC algorithm outperforms the A* algorithm.more » « less
-
null (Ed.)Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-the-art performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, CenterPoint outperforms all previous single model methods by a large margin and ranks first among all Lidar-only submissions.more » « less
-
Dynamic network topology can pose important challenges to communication and control protocols in networks of autonomous vehicles. For instance, maintaining connectivity is a key challenge in unmanned aerial vehicle (UAV) networks. However, tracking and computational resources of the observer module might not be sufficient for constant monitoring of all surrounding nodes in large-scale networks. In this paper, we propose an optimal measurement policy for network topology monitoring under constrained resources. To this end, We formulate the localization of multiple objects in terms of linear networked systems and solve it using Kalman filtering with intermittent observation. The proposed policy includes two sequential steps. We first find optimal measurement attempt probabilities for each target using numerical optimization methods to assign the limited number of resources among targets. The optimal resource allocation follows a waterfall-like solution to assign more resources to targets with lower measurement success probability. This provides a 10% to 60% gain in prediction accuracy. The second step is finding optimal on-off patterns for measurement attempts for each target over time. We show that a regular measurement pattern that evenly distributed resources over time outperforms the two extreme cases of using all measurement resources either in the beginning or at the end of the measurement cycle. Our proof is based on characterizing the fixed-point solution of the error covariance matrix for regular patterns. Extensive simulation results confirm the optimality of the most alternating pattern with up to 10-fold prediction improvement for different scenarios. These two guidelines define a general policy for target tracking under constrained resources with applications to network topology prediction of autonomous systemsmore » « less