The supply of nutrients is a fundamental regulator of ocean productivity and carbon sequestration. Nutrient sources, sinks, residence times, and elemental ratios vary over broad scales, including those resulting from climate-driven changes in upper water column stratification, advection, and the deposition of atmospheric dust. These changes can alter the proximate elemental control of ecosystem productivity with cascading ecological effects and impacts on carbon sequestration. Here, we report multidecadal observations revealing that the ecosystem in the eastern region of the North Pacific Subtropical Gyre (NPSG) oscillates on subdecadal scales between inorganic phosphorus (P i ) sufficiency and limitation, when P i concentration in surface waters decreases below 50–60 nmol⋅kg −1 . In situ observations and model simulations suggest that sea-level pressure changes over the northwest Pacific may induce basin-scale variations in the atmospheric transport and deposition of Asian dust-associated iron (Fe), causing the eastern portion of the NPSG ecosystem to shift between states of Fe and P i limitation. Our results highlight the critical need to include both atmospheric and ocean circulation variability when modeling the response of open ocean pelagic ecosystems under future climate change scenarios.
more »
« less
This content will become publicly available on January 26, 2026
Quantifying Dust Nutrient Mobility Through an Alpine Watershed
Abstract Dust has the potential to play a significant role in the nutrient dynamics of alpine watersheds with important ecological implications. However, little is known about how dust nutrients circulate through the environment and which watershed characteristics facilitate dust impacts on water quality. This study explored the contribution of dust‐deposited nutrients, focusing on a high‐elevation Long Term Ecological Research site, where dust samples have been continuously collected since 2017. We incorporated observed dust nutrient compositions, including fractions of inorganic and organic nitrogen and phosphorus, into a popular hydrological model, the Soil and Water Assessment Tool, and ran simulations for 2019–2021. By comparing simulations with and without dust nutrient inputs, we estimated the impact of dust‐deposited nutrients on individual watershed processes. Results revealed a significant contribution of dust‐deposited nutrients, particularly soluble reactive phosphorus (SRP), to several nutrient cycling and transport pathways. Notably, dust contributed up to 19.3% of the SRP load in annual streamflow (increasing monthly streamflow concentration by up to 10.9 μg ). Spatial analysis of model estimates demonstrated a relationship between topography, soil type, and the cycling and transport of dust nutrients. The largest dust nutrient contributions were found in catchment areas with lower slope and less hydric soils, where other natural mobilization processes may be limited. This comparative modeling approach stresses the importance of including dust nutrients in watershed models, especially in oligotrophic systems, and has potential to validate these findings elsewhere and identify how watershed characteristics may either mollify or accentuate the impacts of dust deposition on mountain freshwater systems.
more »
« less
- PAR ID:
- 10571181
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 130
- Issue:
- 1
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Submarine groundwater discharge (SGD), comprising both nearshore and offshore components, plays a vital role in water cycling and solute transport in coastal areas, and affects coastal marine ecosystems. Previous estimations of SGD based on seepage meters, geochemical tracers, water balances, analytical, and numerical approaches frequently overlooked offshore contributions driven by oceanic currents, waves, and tides, resulting in an incomplete understanding of SGD dynamics and its ecological consequences. Therefore, this study quantified the total SGD by integrating offshore (current‐, wave‐, and tide‐driven SGD) and nearshore (fresh SGD and tide‐driven SGD) components in Florida coasts. The calculated total SGD was approximately 15.08% of annual precipitation volume in Florida, with 14.09% offshore SGD (0.7%, 8.2%, and 5.2% from currents, waves, and tides, respectively) and ∼0.986% nearshore SGD (0.44% and 0.55% from fresh and recirculated SGD), underscoring offshore SGD as a major driver of groundwater discharge extending across the continental shelf. Moreover, nearshore SGD‐derived dissolved inorganic nutrient fluxes were estimated as kg/yr for nitrogen and kg/yr for phosphorus, whereas offshore SGD‐derived nutrients were kg/yr for nitrogen and kg/yr for phosphorus. On average, these nutrient inputs were approximately 6 and 4 times greater than those from surface water nutrient fluxes from coastal river discharge for dissolved inorganic nitrogen and dissolved inorganic phosphorus, respectively, highlighting the significant role of SGD in nutrient cycling in Florida. Additionally, we identified 54 SGD hotspots, which are generally aligned spatially with the distribution of coastal springs. Therefore, future research should evaluate the impact on nutrient loads to enhance coastal water management and sustainability.more » « less
-
Climate warming in the Arctic is thawing previously frozen soil (permafrost). Permafrost thaw alters landscape hydrology and increases weathering rates, which can increase the delivery of solutes to adjacent waters. Long-term river monitoring of the Kuparuk River (North Slope, Alaska, USA) confirms significant increases in solutes that are indicative of thawing permafrost. However, there is no evidence of an increase in total phosphorus (TP) or soluble reactive phosphorus (SRP), the nutrient that limits primary production in this and similar rivers in the region. Here, we show that Mehlich-3 extractable iron (Fe) and aluminum (Al) impart high P biogeochemical sorption capacities across a range of landscape features that we would expect to promote lateral movement of water and solutes to headwater streams in our study watershed. Reanalysis of a recently published pan-Arctic soils database suggests that this high P sorption capacity could be common in other parts of the Arctic region. We conclude that while warming-induced permafrost thaw may increase the potential for P mobility in our watershed, simultaneous increases in pedogenic secondary Fe and Al minerals may continue to retain P in these soils and limit biological productivity in the adjacent river. We suggest that similar interactions may occur in other areas of the Arctic where comparable biogeochemical conditions prevail.more » « less
-
Abstract Hydrologic modeling was used to estimate potential changes in nutrients, suspended sediment, and streamflow in various biomass production scenarios with conservation practices under different landscape designs. Two major corn and soybean croplands were selected for study: the South Fork of the Iowa River watershed and the headwater of the Raccoon River watershed. A physically based model, the Soil and Water Assessment Tool, was used to simulate hydrology and water quality under different scenarios with conservation practices and biomass production. Scenarios are based on conservation practices and biomass production; riparian buffer (RB), saturated buffer, and grassed waterways; various stover harvest rates of 30%, 45%, and 70% with and without winter cover crops; and conversion of marginal land to switchgrass. Conservation practices and landscape design with different biomass feedstocks were shown to significantly improve water quality while supporting sustainable biomass production. Model results for nitrogen, phosphorus, and suspended sediments were analyzed temporally at spatial scales that varied from hydrologic response units to the entire watershed. With conservation practices, water quality could potentially improve by reducing nitrogen loads by up to 20%–30% (stover harvest with cover crop), phosphorus loads by 20%–40% (RB), and sediment loads by 30%–70% (stover harvest with cover crop and RB).more » « less
-
Abstract With mounting scientific evidence demonstrating adverse global climate change (GCC) impacts to water quality, water quality policies, such as the Total Maximum Daily Loads (TMDLs) under the U.S. Clean Water Act, have begun accounting for GCC effects in setting nutrient load‐reduction policy targets. These targets generally require nutrient reductions for attaining prescribed water quality standards (WQS) by setting safe levels of nutrient concentrations that curtail potentially harmful cyanobacteria blooms (CyanoHABs). While some governments require WQS to consider climate change, few tools are available to model the complex interactions between climate change and benthic legacy nutrients. We present a novel process‐based integrated assessment model (IAM) that examines the extent to which synergistic relationships between GCC and legacy Phosphorus release could compromise the ability of water quality policies to attain established WQS. The IAM is calibrated for simulating the eutrophic Missisquoi Bay and watershed in Lake Champlain (2001–2050). Water quality impacts of seven P‐reduction scenarios, including the 64.3% reduction specified under the current TMDL, were examined under 17 GCC scenarios. The TMDL WQS of 0.025 mg/L total phosphorus is unlikely to be met by 2035 under the mandated 64.3% reduction for all GCC scenarios. IAM simulations show that the frequency and severity of summer CyanoHABs increased or minimally decreased under most climate and nutrient reduction scenarios. By harnessing IAMs that couple complex process‐based simulation models, the management of water quality in freshwater lakes can become more adaptive through explicit accounting of GCC effects on both the external and internal sources of nutrients.more » « less
An official website of the United States government
