skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supporting Human and Machine Co-Learning in Citizen Science: Lessons From Gravity Spy
We explore the bi-directional relationship between human and machine learning in citizen science. Theoretically, the study draws on the zone of proximal development (ZPD) concept, which allows us to describe AI augmentation of human learning, human augmentation of machine learning, and how tasks can be designed to facilitate co-learning. The study takes a design-science approach to explore the design, deployment, and evaluations of the Gravity Spy citizen science project. The findings highlight the challenges and opportunities of co-learning, where both humans and machines contribute to each other’s learning and capabilities. The study takes its point of departure in the literature on co-learning and develops a framework for designing projects where humans and machines mutually enhance each other’s learning. The research contributes to the existing literature by developing a dynamic approach to human-AI augmentation, by emphasizing that the ZPD supports ongoing learning for volunteers and keeps machine learning aligned with evolving data. The approach offers potential benefits for project scalability, participant engagement, and automation considerations while acknowledging the importance of tutorials, community access, and expert involvement in supporting learning.  more » « less
Award ID(s):
2106865 2106882
PAR ID:
10571261
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Association for Advancing Participatory Sciences (AAPS)
Date Published:
Journal Name:
Citizen Science: Theory and Practice
Volume:
9
Issue:
1
ISSN:
2057-4991
Page Range / eLocation ID:
42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A hallmark of human intelligence is the ability to understand and influence other minds. Humans engage in inferential social learning (ISL) by using commonsense psychology to learn from others and help others learn. Recent advances in artificial intelligence (AI) are raising new questions about the feasibility of human–machine interactions that support such powerful modes of social learning. Here, we envision what it means to develop socially intelligent machines that can learn, teach, and communicate in ways that are characteristic of ISL. Rather than machines that simply predict human behaviours or recapitulate superficial aspects of human sociality (e.g. smiling, imitating), we should aim to build machines that can learn from human inputs and generate outputs for humans by proactively considering human values, intentions and beliefs. While such machines can inspire next-generation AI systems that learn more effectively from humans (as learners) and even help humans acquire new knowledge (as teachers), achieving these goals will also require scientific studies of its counterpart: how humans reason about machine minds and behaviours. We close by discussing the need for closer collaborations between the AI/ML and cognitive science communities to advance a science of both natural and artificial intelligence. This article is part of a discussion meeting issue ‘Cognitive artificial intelligence’. 
    more » « less
  2. Gravity Spy is a citizen science project that draws on the contributions of both humans and machines to achieve its scientific goals. The system supports the Laser Interferometer Gravitational Observatory (LIGO) by classifying “glitches” that interfere with observations. The system makes three advances on the current state of the art: explicit training for new volunteers, synergy between machine and human classification and support for discovery of new classes of glitch. As well, it provides a platform for human-centred computing research on motivation, learning and collaboration. The system has been launched and is currently in operation. 
    more » « less
  3. Citizen science and artificial intelligence (AI) complement each other by harnessing the strengths of both human and machine capabilities. Citizen science generates terabytes of raw numerical, text, and image data, the analysis of which requires automated techniques to process in an efficient manner. Conversely, AI computer vision technology can require tens of thousands of images during the training process, and citizen science projects are well suited to provide large libraries of data. Herein, we describe how AI tools are being applied across the GLOBE Observer citizen science data ecosystem, where image recognition algorithms are supporting data ingest processes, protecting user privacy and improving data fidelity. GLOBE citizen science data has been used to develop automated data classification routines that enable information discovery of mosquito larvae and land cover labels. These advances position GLOBE citizen scientist data for discovery and use in environmental and health research, as well as by machine learning scientists working in the general field of GeoAI. 
    more » « less
  4. Citizen science has proved to be a unique and effective tool in helping science and society cope with the ever-growing data rates and volumes that characterize the modern research landscape. It also serves a critical role in engaging the public with research in a direct, authentic fashion and by doing so promotes a better understanding of the processes of science. To take full advantage of the onslaught of data being experienced across the disciplines, it is essential that citizen science platforms leverage the complementary strengths of humans and machines. ThisPerspectivespiece explores the issues encountered in designing human–machine systems optimized for both efficiency and volunteer engagement, while striving to safeguard and encourage opportunities for serendipitous discovery. We discuss case studies from Zooniverse, a large online citizen science platform, and show that combining human and machine classifications can efficiently produce results superior to those of either one alone and how smart task allocation can lead to further efficiencies in the system. While these examples make clear the promise of human–machine integration within an online citizen science system, we then explore in detail how system design choices can inadvertently lower volunteer engagement, create exclusionary practices, and reduce opportunity for serendipitous discovery. Throughout we investigate the tensions that arise when designing a human–machine system serving the dual goals of carrying out research in the most efficient manner possible while empowering a broad community to authentically engage in this research. 
    more » « less
  5. Dialog systems (e.g., chatbots) have been widely studied, yet related research that leverages artificial intelligence (AI) and natural language processing (NLP) is constantly evolving. These systems have typically been developed to interact with humans in the form of speech, visual, or text conversation. As humans continue to adopt dialog systems for various objectives, there is a need to involve humans in every facet of the dialog development life cycle for synergistic augmentation of both the humans and the dialog system actors in real-world settings. We provide a holistic literature survey on the recent advancements inhuman-centered dialog systems(HCDS). Specifically, we provide background context surrounding the recent advancements in machine learning-based dialog systems and human-centered AI. We then bridge the gap between the two AI sub-fields and organize the research works on HCDS under three major categories (i.e., Human-Chatbot Collaboration, Human-Chatbot Alignment, Human-Centered Chatbot Design & Governance). In addition, we discuss the applicability and accessibility of the HCDS implementations through benchmark datasets, application scenarios, and downstream NLP tasks. 
    more » « less