Microgrid, which is one of the main foundations of the future grid, inherits many properties of the smart grid such as, self‐healing capability, real‐time monitoring, advanced two‐way communication systems, low voltage ride through capability of distributed generator (DG) units, and high penetration of DGs. These substantial changes in properties and capabilities of the future grid result in significant protection challenges such as bidirectional fault current, various levels of fault current under different operating conditions, necessity of standards for automation system, cyber security issues, as well as, designing an appropriate grounding system, fast fault detection/location method, the need for an efficient circuit breaker for DC microgrids. Due to these new challenges in microgrid protection, the conventional protection strategies have to be either modified or substituted with new ones. This study aims to provide a comprehensive review of the protection challenges in AC and DC microgrids and available solutions to deal with them. Future trends in microgrid protection are also briefly discussed. 
                        more » 
                        « less   
                    
                            
                            Travelling wave‐based fault detection and location in a real low‐voltage DC microgrid
                        
                    
    
            Abstract This paper discusses a device‐level implementation of a travelling wave (TW) protection device (PD) designed for a real low‐voltage DC microgrid. The TWPD fault detection and location algorithm is executed on a commercial digital signal processor (DSP) board, involving signal sampling at 1 MHz via the DSP board's analog‐to‐digital converter (ADC). The analogue input card measures positive pole, negative pole and pole‐to‐pole voltages at the TWPD location. Upon a successful fault detection using a second‐order high‐pass filter, the voltage data is normalised and multi‐resolution analysis (MRA) is performed on a 128‐sample buffer around the TW arrival time. MRA employs the discrete wavelet transform (DWT) to capture high‐frequency voltage patterns, and then the Parseval's energy theorem quantifies these TW characteristics by computing the energy of reconstructed wavelet coefficients. These energy values per decomposed frequency band are the basis for training a random forest classifier that predicts fault location and type. The TWPD is fully implemented and connected to a real DC microgrid in Albuquerque, NM, USA, for validation, and results are shown for field tests verifying the performance under faults. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2338555
- PAR ID:
- 10571379
- Publisher / Repository:
- DOI PREFIX: 10.1049
- Date Published:
- Journal Name:
- IET Smart Grid
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2515-2947
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This article identifies and validates the use of ultrafast silicon carbide (SiC) junction field effect transistor (JFET)-based self-powered solid-state circuit breakers (SSCBs) as the enabling protective device for a 340 Vdc residential dc community microgrid. These SSCBs will be incorporated into a radial distribution system in order to enhance fault discrimination through autonomous operation. Because of the nature and characteristics of short-circuit fault inception in dc microgrids, the time-current trip characteristics of protective devices must be several orders of magnitude faster than conventional circuit breakers. The proposed SSCBs detect short-circuit faults by sensing the sudden voltage rise between its two power terminals and draw power from the fault condition itself to turn off SiC JFETs and then, coordinate with no-load contacts that can isolate the fault. Depending upon the location of the SSCBs in the microgrid, either unidirectional or bidirectional implementations are incorporated. Cascaded SSCBs are tuned using a simple resistor change to enable fault discrimination between upstream high-current feeds and downstream lower current branches. Operation of one of the SSCBs and three in cascaded arrangements are validated both in simulation and with a hardware test platform. Thermal impact on the SSCB is discussed as well. The target application is a residential dc microgrid that will be installed as part of a revitalization effort of an inner city Milwaukee neighborhood.more » « less
- 
            DC microgrids have attracted significant attention over the last decade in both academia and industry. DC microgrids have demonstrated superiority over AC microgrids with respect to reliability, efficiency, control simplicity, integration of renewable energy sources, and connection of dc loads. Despite these numerous advantages, designing and implementing an appropriate protection system for dc microgrids remains a significant challenge. The challenge stems from the rapid rise of dc fault current which must be extinguished in the absence of naturally occurring zero crossings, potentially leading to sustained arcs. In this paper, the challenges of DC microgrid protection are investigated from various aspects including, dc fault current characteristics, ground systems, fault detection methods, protective devices, and fault location methods. In each part, a comprehensive review has been carried out. Finally, future trends in the protection of DC microgrids are briefly discussed.more » « less
- 
            Abstract This paper presents a motion-sensing device with the capability of harvesting energy from low-frequency motion activities. Based on the high surface area reverse electrowetting-on-dielectric (REWOD) energy harvesting technique, mechanical modulation of the liquid generates an AC signal, which is modeled analytically and implemented in Matlab and COMSOL. A constant DC voltage is produced by using a rectifier and a DC–DC converter to power up the motion-sensing read-out circuit. A charge amplifier converts the generated charge into a proportional output voltage, which is transmitted wirelessly to a remote receiver. The harvested DC voltage after the rectifier and DC–DC converter is found to be 3.3 V, having a measured power conversion efficiency (PCE) of the rectifier as high as 40.26% at 5 Hz frequency. The energy harvester demonstrates a linear relationship between the frequency of motion and the generated output power, making it highly suitable as a self-powered wearable motion sensor.more » « less
- 
            This paper proposes a methodology to increase the lifetime of the central battery energy storage system (CBESS) in an islanded building-level DC microgrid (MG) and enhance the voltage quality of the system by employing the supercapacitor (SC) of electric vehicles (EVs) that utilize battery-SC hybrid energy storage systems. To this end, an adaptive filtration-based (FB) current-sharing strategy is proposed in the voltage feedback control loop of the MG that smooths the CBESS current to increase its lifetime by allocating a portion of the high-frequency current variations to the EV charger. The bandwidth of this filter is adjusted using a data-driven algorithm to guarantee that only the EV's SC absorbs the high-frequency current variations, thereby enabling the EV's battery energy storage system (BESS) to follow its standard constant current-constant voltage (CC-CV) charging profile. Therefore, the EV's SC can coordinate with the CBESS without impacting the charging profile of the EV's BESS. Also, a small-signal stability analysis is provided indicating that the proposed approach improves the marginal voltage stability of the DC MG leading to better transient response and higher voltage quality. Finally, the performance of the proposed EV charging is validated using MATLAB/Simulink and hardware-in-the-loop (HIL) testing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
