skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gaps in U.S. livestock data are a barrier to effective environmental and disease management
Abstract Livestock are a critical part of our food systems, yet their abundance globally has been cited as a driver of many environmental and human health concerns. Issues such as soil, water, and air pollution, greenhouse gas emissions, aquifer depletion, antimicrobial resistance genes, and zoonotic disease outbreaks have all been linked to livestock operations. While many studies have examined these issues at depth at local scales, it has been difficult to complete studies at regional or national scales due to the dearth of livestock data, hindering pollution mitigation or response time for tracing and monitoring disease outbreaks. In the U.S. the National Agricultural Statistics Service completes a Census once every 5 years that includes livestock, but data are only available at the county level leaving little inference that can be made at such a coarse spatiotemporal scale. While other data exist through some regulated permitting programs, there are significant data gaps in where livestock are raised, how many livestock are on site at a given time, and how these livestock and, importantly, their waste emissions, are managed. In this perspective, we highlight the need for better livestock data, then discuss the accessibility and key limitations of currently available data. We then feature some recent work to improve livestock data availability through remote-sensing and machine learning, ending with our takeaways to address these data needs for the future of environmental and public health management.  more » « less
Award ID(s):
2019435
PAR ID:
10571438
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
20
Issue:
3
ISSN:
1748-9326
Format(s):
Medium: X Size: Article No. 031001
Size(s):
Article No. 031001
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Many of the world’s major cities have implemented tree planting programs based on assumed environmental and social benefits of urban forests. Recent studies have increasingly tested these assumptions and provide empirical evidence for the contributions of tree planting programs, as well as their feasibility and limits, for solving or mitigating urban environmental and social issues. We propose that current evidence supports local cooling, stormwater absorption, and health benefits of urban trees for local residents. However, the potential for urban trees to appreciably mitigate greenhouse gas emissions and air pollution over a wide array of sites and environmental conditions is limited. Consequently, urban trees appear to be more promising for climate and pollution adaptation strategies than mitigation strategies. In large part, this is due to space constraints limiting the extent of urban tree canopies relative to the current magnitude of emissions. The most promising environmental and health impacts of urban trees are those that can be realized with well-stewarded tree planting and localized design interventions at site to municipal scales. Tree planting at these scales has documented benefits on local climate and health, which can be maximized through targeted site design followed by monitoring, adaptive management, and studies of long-term eco-evolutionary dynamics. 
    more » « less
  2. There are plenty of reasons to believe that parasite populations will respond to biodiversity loss, warming, pollution, and other forms of global change. But will global change enhance transmission, increasing the incidence of troublesome parasites that put people, livestock, and wildlife at risk? Or will parasite species decline in abundance—or even become extinct—suggesting trouble on the horizon for parasite biodiversity? Here, I explain why answers have thus far eluded us and suggest new lines of research that would advance the field. Data collected to date suggest that parasites can respond to global change with increases or decreases in abundance, depending on the driver and the parasite. The future will certainly bring outbreaks of some parasites, and these should be addressed to protect human and ecosystem health. But troublesome parasites should not consume all of our research effort, because this changing world contains many parasite species that are in trouble. 
    more » « less
  3. Abstract During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs). NPIs were applied primarily at national or regional scales. Here, we use weekly anonymized and aggregated human mobility data and spatially highly resolved data on COVID-19 cases at the municipality level in Mexico to investigate how behavioral changes in response to the pandemic have altered the spatial scales of transmission and interventions during its first wave (March–June 2020). We find that the epidemic dynamics in Mexico were initially driven by exports of COVID-19 cases from Mexico State and Mexico City, where early outbreaks occurred. The mobility network shifted after the implementation of interventions in late March 2020, and the mobility network communities became more disjointed while epidemics in these communities became increasingly synchronized. Our results provide dynamic insights into how to use network science and epidemiological modeling to inform the spatial scale at which interventions are most impactful in mitigating the spread of COVID-19 and infectious diseases in general. 
    more » « less
  4. Abstract Scaling up electric vehicles (EVs) provides an avenue to mitigate both carbon emissions and air pollution from road transport. The benefits of EV adoption for climate, air quality, and health have been widely documented. Yet, evidence on the distribution of these impacts has not been systematically reviewed, despite its central importance to ensure a just and equitable transition. Here, we perform a systematic review of recent EV studies that have examined the spatial distribution of the emissions, air pollution, and health impacts, as an important aspect of the equity implications. Using the Context-Interventions-Mechanisms-Outcome framework with a two-step search strategy, we narrowed down to 47 papers that met our inclusion criteria for detailed review and synthesis. We identified two key factors that have been found to influence spatial distributions. First, the cross-sectoral linkages may result in unintended impacts elsewhere. For instance, the generation of electricity to charge EVs, and the production of batteries and other materials to manufacture EVs could increase the emissions and pollution in locations other than where EVs are adopted. Second, since air pollution and health are local issues, additional location-specific factors may play a role in determining the spatial distribution, such as the wind transport of pollution, and the size and vulnerability of the exposed populations. Based on our synthesis of existing evidence, we highlight two important areas for further research: (1) fine-scale pollution and health impact assessment to better characterize exposure and health disparities across regions and population groups; and (2) a systematic representation of the EV value chain that captures the linkages between the transport, power and manufacturing sectors as well as the regionally-varying activities and impacts. 
    more » « less
  5. Abstract Wildfires cause elevated air pollution that can be detrimental to human health. However, health impact assessments associated with emissions from wildfire events are subject to uncertainty arising from different sources. Here, we quantify and compare major uncertainties in mortality and morbidity outcomes of exposure to fine particulate matter (PM2.5) pollution estimated for a series of wildfires in the Southeastern U.S. We present an approach to compare uncertainty in estimated health impacts specifically due to two driving factors, wildfire‐related smoke PM2.5fields and variability in concentration‐response parameters from epidemiologic studies of ambient and smoke PM2.5. This analysis, focused on the 2016 Southeastern wildfires, suggests that emissions from these fires had public health consequences in North Carolina. Using several methods based on publicly available monitor data and atmospheric models to represent wildfire‐attributable PM2.5, we estimate impacts on several health outcomes and quantify associated uncertainty. Multiple concentration‐response parameters derived from studies of ambient and wildfire‐specific PM2.5are used to assess health‐related uncertainty. Results show large variability and uncertainty in wildfire impact estimates, with comparable uncertainties due to the smoke pollution fields and health response parameters for some outcomes, but substantially larger health‐related uncertainty for several outcomes. Consideration of these uncertainties can support efforts to improve estimates of wildfire impacts and inform fire‐related decision‐making. 
    more » « less