Abstract People respond quickly when they have a clear preference and slowly when they are close to indifference. The question is whether others exploit this tendency to infer private information. In two-stage bargaining experiments, we observe that the speed with which buyers reject sellers’ offers decreases with the size of the foregone surplus. This should allow sellers to infer buyers’ values from response times (RT), creating an incentive for buyers to manipulate their RT. We experimentally identify distinct conditions under which subjects do, and do not, exhibit such strategic behaviour. These results provide the first insight into the possible use of RT as a strategic variable.
more »
« less
Deliberation during online bargaining reveals strategic information
A standard assumption in game theory is that decision-makers have preplanned strategies telling them what actions to take for every contingency. In contrast, nonstrategic decisions often involve an on-the-spot comparison process, with longer response times (RT) for choices between more similarly appealing options. If strategic decisions also exhibit these patterns, then RT might betray private information and alter game theory predictions. Here, we examined bargaining behavior to determine whether RT reveals private information in strategic settings. Using preexisting and experimental data from eBay, we show that both buyers and sellers take hours longer to accept bad offers and to reject good offers. We find nearly identical patterns in the two datasets, indicating a causal effect of offer size on RT. However, this relationship is half as strong for rejections as for acceptances, reducing the amount of useful private information revealed by the sellers. Counter to our predictions, buyers are discouraged by slow rejections—they are less likely to counteroffer to slow sellers. We also show that a drift-diffusion model (DDM), traditionally limited to decisions on the order of seconds, can account for decisions on the order of hours, sometimes days. The DDM reveals that more experienced sellers are less cautious and more inclined to accept offers. In summary, strategic decisions are inconsistent with preplanned strategies. This underscores the need for game theory to incorporate RT as a strategic variable and broadens the applicability of the DDM to slow decisions.
more »
« less
- Award ID(s):
- 2333979
- PAR ID:
- 10571715
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 7
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hartline, Jason (Ed.)The arrival of digital commerce has lead to an increasing use of personalization and differentiation strategies. With differentiated products along the quality dimension and/or the quantity dimension comes the need for nonlinear pricing policies or second degree price discrimination. The optimal pricing strategies for quality and quantity differentiated products were first investigated by Mussa and Rosen (1978) and Maskin and Riley (1984), respectively. The optimal pricing strategies were shown to depend heavily on the prior distribution of the private information regarding the types, and ultimately the willingness-to-pay of the buyers. Yet, frequently the sellers possess only weak and incomplete information about the distribution of demand. This paper aims to develop robust pricing policies that are independent of specific demand distributions and provide revenue guarantees across all possible distributions.more » « less
-
The growing adoption of data analytics platforms and machine learning-based solutions for decision-makers creates a significant demand for datasets, which explains the appearance of data markets. In a well-functioning data market, sellers share data in exchange for money, and buyers pay for datasets that help them solve problems. The market raises sufficient money to compensate sellers and incentivize them to keep sharing datasets. This low-friction matching of sellers and buyers distributes the value of data among participants. But designing online data markets is challenging because they must account for the strategic behavior of participants. In this paper, we introduce techniques to protect data markets from strategic participants, even when the asset traded is data. We combine those techniques into a pricing algorithm specifically designed to trade data. The evaluation includes a user study and extensive simulations. Together, the evaluation demonstrates how participants strategize and the effectiveness of our techniques.more » « less
-
Personal information and other types of private data are valuable for both data owners and institutions interested in providing targeted and customized services that require analyzing such data. In this context, privacy is sometimes seen as a commodity: institutions (data buyers) pay individuals (or data sellers) in exchange for private data. In this study, we examine the problem of designing such data contracts, through which a buyer aims to minimize his payment to the sellers for a desired level of data quality, while the latter aim to obtain adequate compensation for giving up a certain amount of privacy. Specifically, we use the concept of differential privacy and examine a model of linear and nonlinear queries on private data. We show that conventional algorithms that introduce differential privacy via zero-mean noise fall short for the purpose of such transactions as they do not provide sufficient degree of freedom for the contract designer to negotiate between the competing interests of the buyer and the sellers. Instead, we propose a biased differentially private algorithm which allows us to customize the privacy-accuracy tradeoff for each individual. We use a contract design approach to find the optimal contracts when using this biased algorithm to provide privacy, and show that under this combination the buyer can achieve the same level of accuracy with a lower payment as compared to using the unbiased algorithms, while incurring lower privacy loss for the sellers.more » « less
-
Modern smart grid systems exploit a two-way interaction paradigm between the utility and the electricity user and promote the role of prosumer, as a new user type, able to generate and sell energy, or consume energy. Within such a setting, the prosumers and their interactions with the microgrid system become of high significance for its efficient operation. In this article, to model the corresponding interactions, we introduce a labor economics-based framework by exploiting the principles of contract theory, that jointly achieves the satisfaction of the various interacting system entities, i.e., the microgrid operator (MGO) and the prosumers. The MGO offers personalized rewards to the sellers and buyers, to incentivize them to sell and purchase energy, respectively. To provide a stable and efficient operation point, while aiming at jointly satisfying the profit and requirements of the involved competing parties, optimal personalized contracts, i.e., rewards and amount of sold/purchased energy, are determined, by formulating and solving contract-theoretic optimization problems between the MGO and the sellers or buyers. The analysis is provided for both cases of complete and incomplete information availability regarding the prosumers’ types. Detailed numerical results are presented to demonstrate the operation characteristics of the proposed framework under diverse scenarios.more » « less
An official website of the United States government
