skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lake Ice From Historical Records to Contemporary Science
Abstract Lake ice phenology is a critical component of the cryosphere and a sensitive indicator of climate change that has some of the longest records related to climate science. Records commenced for numerous reasons including navigation, hydropower development, and individual curiosity, demonstrating the value of lake ice as a seasonal event of significant importance to a broad swath of peoples and countries. At the same time, lake ice loss has been rapid and widespread with lakes losing ice at an average rate of 17 days per century. In this Perspective, we examine the earliest known records of ice cover and the scientific studies that developed from that practice of record keeping. Studies in lake ice began in the nineteenth Century and have included relationships between climate, biology, and ice cover. Early studies developed some of the foundational principles that limnologists and climate scientists are still exploring, such as the relationship between ice phenology and climate variables, large‐scale climate oscillations, and morphological characteristics, with implications for lake ice physical structure and under‐ice ecosystems in a warming climate. We conclude with an examination of the state of the field and how these centuries‐long lake ice records can continue to inform cutting edge science by validating satellite remote sensing techniques, in addition to modeling approaches and collaborations across disciplines, that can improve our understanding of the loss of lake ice in a warmer world.  more » « less
Award ID(s):
2025982
PAR ID:
10571751
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
129
Issue:
4
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In recent decades, lakes have experienced unprecedented ice loss with widespread ramifications for winter ecological processes. The rapid loss of ice, resurgence of winter biology, and proliferation of remote sensing technologies, presents a unique opportunity to integrate disciplines to further understand the broad spatial and temporal patterns in ice loss and its consequences. Here, we summarize ice phenology records for 78 lakes in 12 countries across North America, Europe, and Asia to permit the inclusion and harmonization of in situ ice phenology observations in future interdisciplinary studies. These ice records represent some of the longest climate observations directly collected by people. We highlight the importance of applying the same definition of ice-on and ice-off within a lake across the time-series, regardless of how the ice is observed, to broaden our understanding of ice loss across vast spatial and temporal scales. 
    more » « less
  2. Abstract Mountain lakes experience extreme interannual climate variation as well as rapidly warming air temperatures, making them ideal systems to understand lake‐climate responses. Snowpack and water temperature are highly correlated in mountain lakes, but we lack a complete understanding of underlying mechanisms. Motivated by predicted declines in snowfall with future temperature increases, we investigated how surface heat fluxes and lake warming responded to variation in snowpack, ice‐off, and summer weather patterns in a high elevation lake in the Sierra Nevada, California. Ice‐off timing determined the phenology of lake exposure to solar radiation, and was the dominant mechanism linking snowpack to lake temperature. The relative importance of heat loss fluxes (longwave radiation, latent and sensible heat exchange) varied among wet and dry years. Declines in snowpack and ice cover in mountain systems will reduce variability in lake thermal responses and increase the responsiveness of lake warming to atmospheric forcing. 
    more » « less
  3. Abstract Antarctic lakes with perennial ice covers provide the opportunity to investigate in-lake processes without direct atmospheric interaction, and to study their ice-cover sensitivity to climate conditions. In this study, a numerical model – driven by radiative, atmospheric and turbulent heat fluxes from the water body beneath the ice cover – was implemented to investigate the impact of climate change on the ice covers from two Antarctic lakes: west lobe of Lake Bonney (WLB) and Crooked Lake. Model results agreed well with measured ice thicknesses of both lakes (WLB – RMSE= 0.11 m over 16 years of data; Crooked Lake – RMSE= 0.07 m over 1 year of data), and had acceptable results with measured ablation data at WLB (RMSE= 0.28 m over 6 years). The differences between measured and modeled ablation occurred because the model does not consider interannual variability of the ice optical properties and seasonal changes of the lake's thermal structure. Results indicate that projected summer air temperatures will increase the ice-cover annual melting in WLB by 2050, but that the ice cover will remain perennial through the end of this century. Contrarily, at Crooked Lake the ice cover becomes ephemeral most likely due to the increase in air temperatures. 
    more » « less
  4. Abstract Over the coming century, both Arctic and Antarctic sea ice cover are projected to substantially decline. While many studies have documented the potential impacts of projected Arctic sea ice loss on the climate of the mid-latitudes and the tropics, little attention has been paid to the impacts of Antarctic sea ice loss. Here, using comprehensive climate model simulations, we show that the effects of end-of-the-century projected Antarctic sea ice loss extend much further than the tropics, and are able to produce considerable impacts on Arctic climate. Specifically, our model indicates that the Arctic surface will warm by 1 °C and Arctic sea ice extent will decline by 0.5 × 106km2in response to future Antarctic sea ice loss. Furthermore, with the aid of additional atmosphere-only simulations, we show that this pole-to-pole effect is mediated by the response of the tropical SSTs to Antarctic sea ice loss: these simulations reveal that Rossby waves originating in the tropical Pacific cause the Aleutian Low to deepen in the boreal winter, bringing warm air into the Arctic, and leading to sea ice loss in the Bering Sea. This pole-to-pole signal highlights the importance of understanding the climate impacts of the projected sea ice loss in the Antarctic, which could be as important as those associated with projected sea ice loss in the Arctic. 
    more » « less
  5. Abstract Millions of lakes worldwide are distributed at latitudes or elevations resulting in the formation of lake ice during winter. Lake ice affects the transfer of energy, heat, light, and material between lakes and their surroundings creating an environment dramatically different from open‐water conditions. While this fundamental restructuring leads to distinct gradients in ions, dissolved gases, and nutrients throughout the water column, surprisingly little is known about the resulting effects on ecosystem processes and food webs, highlighting the lack of a general limnological framework that characterizes the structure and function of lakes under a gradient of ice cover. Drawing from the literature and three novel case studies, we present the Lake Ice Continuum Concept (LICC) as a model for understanding how key aspects of the physical, chemical, and ecological structure and function of lakes vary along a continuum of winter climate conditions mediated by ice and snow cover. We examine key differences in energy, redox, and ecological community structure and describe how they vary in response to shifts in physical mixing dynamics and light availability for lakes with ice and snow cover, lakes with clear ice alone, and lakes lacking winter ice altogether. Global change is driving ice covered lakes toward not only warmer annual average temperatures but also reduced, intermittent or no ice cover. The LICC highlights the wide range of responses of lakes to ongoing climate‐driven changes in ice cover and serves as a reminder of the need to understand the role of winter in the annual aquatic cycle. 
    more » « less