Abstract Colloidal crystals are used to understand fundamentals of atomic rearrangements in condensed matter and build complex metamaterials with unique functionalities. Simulations predict a multitude of self-assembled crystal structures from anisotropic colloids, but these shapes have been challenging to fabricate. Here, we use two-photon lithography to fabricate Archimedean truncated tetrahedrons and self-assemble them under quasi-2D confinement. These particles self-assemble into a hexagonal phase under an in-plane gravitational potential. Under additional gravitational potential, the hexagonal phase transitions into a quasi-diamond two-unit basis. In-situ imaging reveal this phase transition is initiated by an out-of-plane rotation of a particle at a crystalline defect and causes a chain reaction of neighboring particle rotations. Our results provide a framework of studying different structures from hard-particle self-assembly and demonstrates the ability to use confinement to induce unusual phases.
more »
« less
Self-Assembly and Transport Phenomena of Colloids: Confinement and Geometrical Effects
AbstractColloidal dispersions exhibit rich equilibrium and nonequilibrium thermodynamic properties, self-assemble into diverse structures at different length scales, and display transport behavior under bulk conditions. In confinement or under geometrical restrictions, new phenomena emerge that have no counterpart when the colloids are embedded in an open, noncurved space. In this review, we focus on the effects of confinement and geometry on the self-assembly and transport of colloids and fluidized granular systems, which serve as model systems. Our goal is to summarize experiments, theoretical approximations and molecular simulations that provide physical insight on the role played by the geometry at the mesoscopic scale. We highlight particular challenges, and show preliminary results based on the covariant Smoluchowski equation, that present promising avenues to study colloidal dynamics in a non-Euclidean geometry.
more »
« less
- Award ID(s):
- 1904531
- PAR ID:
- 10571851
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Condensed Matter Physics
- ISSN:
- 1947-5454
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Complex and active fluids find broad applications in flows through porous materials. Nontrivial rheology can couple to porous microstructure leading to surprising flow patterns and associated transport properties in geophysical, biological, and industrial systems. Viscoelastic instabilities are highly sensitive to pore geometry and can give rise to chaotic velocity fluctuations. A number of recent studies have begun to untangle how the pore-scale geometry influences the sample-scale flow topology and the resulting dispersive transport properties of these complex systems. Beyond classical rheological properties, active colloids and swimming cells exhibit a range of unique properties, including reduced effective viscosity, collective motion, and random walks, that present novel challenges to understanding their mechanics and transport in porous media flows. This review article aims to provide a brief overview of essential, fundamental concepts followed by an in-depth summary of recent developments in this rapidly evolving field. The chosen topics are motivated by applications, and new opportunities for discovery are highlighted.more » « less
-
Boundary conditions influence the outcome of fluid dynamics in conventional passive fluid systems. Such an influence also extends to active fluid systems where fluid can flow by itself without an external driving force. For example, an active fluid that is confined in a thin cylinder can self-organize into a circulation along the central axis of the cylinder but thinning the cylinder to a disk-like geometry suppresses the formation of circulation. These phenomena demonstrated the role of confinement geometry on flow patterns of active fluid. Here, we demonstrate two flow patterns induced by confinement. First, we will show that active fluid can convect within a trapezoidal confinement. Such convection was in a temperature-uniform system, in contrast to Rayleigh-Bénard convection which is induced by a temperature gradient. This result suggested the feasibility of developing convection in a temperature-homogeneous system. Second, we demonstrate a confinement-induced stationary vortex near a corner of confinement whose corner angle is below a critical value. This is similar to conventional Moffatt eddies, except the fluid is internally driven. Our work paves the path to controlling self-organization of active fluid using confinement.more » « less
-
Abstract Active particles, such as swimming bacteria or self-propelled colloids, spontaneously assemble into large-scale dynamic structures. Geometric boundaries often enforce different spatio-temporal patterns compared to unconfined environment and thus provide a platform to control the behavior of active matter. Here, we report collective dynamics of active particles enclosed by soft, deformable boundary, that is responsive to the particles’ activity. We reveal that a quasi two-dimensional fluid droplet enclosing motile colloids powered by the Quincke effect (Quincke rollers) exhibits strong shape fluctuations with a power spectrum consistent with active fluctuations driven by particle-interface collisions. A broken detailed balance confirms the nonequilibrium nature of the shape dynamics. We further find that rollers self-organize into a single drop-spanning vortex, which can undergo a spontaneous symmetry breaking and vortex splitting. The droplet acquires motility while the vortex doublet exists. Our findings provide insights into the complex collective behavior of active colloidal suspensions in soft confinement.more » « less
-
Transport of intracellular components relies on a variety of active and passive mechanisms, ranging from the diffusive spreading of small molecules over short distances to motor-driven motion across long distances. The cell-scale behavior of these mechanisms is fundamentally dependent on the morphology of the underlying cellular structures. Diffusion-limited reaction times can be qualitatively altered by the presence of occluding barriers or by confinement in complex architectures, such as those of reticulated organelles. Motor-driven transport is modulated by the architecture of cytoskeletal filaments that serve as transport highways. In this review, we discuss the impact of geometry on intracellular transport processes that fulfill a broad range of functional objectives, including delivery, distribution, and sorting of cellular components. By unraveling the interplay between morphology and transport efficiency, we aim to elucidate key structure–function relationships that govern the architecture of transport systems at the cellular scale.more » « less
An official website of the United States government

