skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bring Privacy To The Table: Interactive Negotiation for Privacy Settings of Shared Sensing Devices
To address privacy concerns with the Internet of Things (IoT) devices, researchers have proposed enhancements in data collection transparency and user control. However, managing privacy preferences for shared devices with multiple stakeholders remains challenging. We introduced ThingPoll, a system that helps users negotiate privacy configurations for IoT devices in shared settings. We designed ThingPoll by observing twelve participants verbally negotiating privacy preferences, from which we identified potentially successful and inefficient negotiation patterns. ThingPoll bootstraps a preference model from a custom crowdsourced privacy preferences dataset. During negotiations, ThingPoll strategically scaffolds the process by eliciting users’ privacy preferences, providing helpful contexts, and suggesting feasible configuration options. We evaluated ThingPoll with 30 participants negotiating the privacy settings of 4 devices. Using ThingPoll, participants reached an agreement in 97.5% of scenarios within an average of 3.27 minutes. Participants reported high overall satisfaction of 83.3% with ThingPoll as compared to baseline approaches.  more » « less
Award ID(s):
1801472
PAR ID:
10571897
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400703300
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Location:
Honolulu HI USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The proliferation of the Internet of Things (IoT) has started transforming our lifestyle through automation of home appliances. However, there are users who are hesitant to adopt IoT devices due to various privacy and security concerns. In this paper, we elicit peoples’ attitude and concerns towards adopting IoT devices. We conduct an online survey and collect responses from 232 participants from three different geographic regions (United States, Europe, and India); the participants consist of both adopters and non-adopters of IoT devices. Through data analysis, we determine that there are both similarities and differences in perceptions and concerns between adopters and non-adopters. For example, even though IoT and non-IoT users share similar security and privacy concerns, IoT users are more comfortable using IoT devices in private settings compared to non-IoT users. Furthermore, when comparing users’ attitude and concerns across different geographic regions, we found similarities between participants from the US and Europe, yet participants from India showcased contrasting behavior. For instance, we found that participants from India were more trusting in their government to properly protect consumer data and were more comfortable using IoT devices in a variety of public settings, compared to participants from the US and Europe. Based on our findings, we provide recommendations to reduce users’ concerns in adopting IoT devices, and thereby enhance user trust towards adopting IoT devices. 
    more » « less
  2. Abstract Abstract: Users trust IoT apps to control and automate their smart devices. These apps necessarily have access to sensitive data to implement their functionality. However, users lack visibility into how their sensitive data is used, and often blindly trust the app developers. In this paper, we present IoTWATcH, a dynamic analysis tool that uncovers the privacy risks of IoT apps in real-time. We have designed and built IoTWATcH through a comprehensive IoT privacy survey addressing the privacy needs of users. IoTWATCH operates in four phases: (a) it provides users with an interface to specify their privacy preferences at app install time, (b) it adds extra logic to an app’s source code to collect both IoT data and their recipients at runtime, (c) it uses Natural Language Processing (NLP) techniques to construct a model that classifies IoT app data into intuitive privacy labels, and (d) it informs the users when their preferences do not match the privacy labels, exposing sensitive data leaks to users. We implemented and evaluated IoTWATcH on real IoT applications. Specifically, we analyzed 540 IoT apps to train the NLP model and evaluate its effectiveness. IoTWATcH yields an average 94.25% accuracy in classifying IoT app data into privacy labels with only 105 ms additional latency to an app’s execution. 
    more » « less
  3. null (Ed.)
    The privacy of users and information are becoming increasingly important with the growth and pervasive use of mobile devices such as wearables, mobile phones, drones, and Internet of Things (IoT) devices. Today many of these mobile devices are equipped with cameras which enable users to take pictures and record videos anytime they need to do so. In many such cases, bystanders’ privacy is not a concern, and as a result, audio and video of bystanders are often captured without their consent. We present results from a user study in which 21 participants were asked to use a wearable system called FacePET developed to enhance bystanders’ facial privacy by providing a way for bystanders to protect their own privacy rather than relying on external systems for protection. While past works in the literature focused on privacy perceptions of bystanders when photographed in public/shared spaces, there has not been research with a focus on user perceptions of bystander-based wearable devices to enhance privacy. Thus, in this work, we focus on user perceptions of the FacePET device and/or similar wearables to enhance bystanders’ facial privacy. In our study, we found that 16 participants would use FacePET or similar devices to enhance their facial privacy, and 17 participants agreed that if smart glasses had features to conceal users’ identities, it would allow them to become more popular. 
    more » « less
  4. Sherr, Micah; Shafiq, Zubair (Ed.)
    As smart home devices proliferate, protecting the privacy of those who encounter the devices is of the utmost importance both within their own home and in other people's homes. In this study, we conducted a large-scale survey (N=1459) with primary users of and bystanders to smart home devices. While previous work has studied people's privacy experiences and preferences either as smart home primary users or as bystanders, there is a need for a deeper understanding of privacy experiences and preferences in different contexts and across different countries. Instead of classifying people as either primary users or bystanders, we surveyed the same participants across different contexts. We deployed our survey in four countries (Germany, Mexico, the United Kingdom, and the United States) and in two languages (English and Spanish). We found that participants were generally more concerned about devices in their own homes, but perceived video cameras—especially unknown ones—and usability as more concerning in other people's homes. Compared to male participants, female and non-binary participants had less control over configuration of devices and privacy settings—regardless of whether they were the most frequent user. Comparing countries, participants in Mexico were more likely to be comfortable with devices, but also more likely to take privacy precautions around them. We also make cross-contextual recommendations for device designers and policymakers, such as nudges to facilitate social interactions. 
    more » « less
  5. Fitness trackers are undoubtedly gaining in popularity. As fitness-related data are persistently captured, stored, and processed by these devices, the need to ensure users’ privacy is becoming increasingly urgent. In this paper, we apply a data-driven approach to the development of privacy-setting recommendations for fitness devices. We first present a fitness data privacy model that we defined to represent users’ privacy preferences in a way that is unambiguous, compliant with the European Union’s General Data Protection Regulation (GDPR), and able to represent both the user and the third party preferences. Our crowdsourced dataset is collected using current scenarios in the fitness domain and used to identify privacy profiles by applying machine learning techniques. We then examine different personal tracking data and user traits which can potentially drive the recommendation of privacy profiles to the users. Finally, a set of privacy-setting recommendation strategies with different guidance styles are designed based on the resulting profiles. Interestingly, our results show several semantic relationships among users’ traits, characteristics, and attitudes that are useful in providing privacy recommendations. Even though several works exist on privacy preference modeling, this paper makes a contribution in modeling privacy preferences for data sharing and processing in the IoT and fitness domain, with specific attention to GDPR compliance. Moreover, the identification of well-identified clusters of preferences and predictors of such clusters is a relevant contribution for user profiling and for the design of interactive recommendation strategies that aim to balance users’ control over their privacy permissions and the simplicity of setting these permissions. 
    more » « less