skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computer‐Aided Design of Integrated Digital Strain Sensors for Hardware‐Based Recognition and Quantification of Human Movements
Abstract An integrated strain sensor system that has a unique response to a specific (set of) human movement(s) has the potential to impact various musculoskeletal health tracking applications akin to the step counter's impact on physical activity tracking. It is determined that an open circuit state of a sensor can be used as such a unique response. With this consideration, a digital strain sensor (DigSS) that exhibits a binary (i.e., ON/OFF) response when a threshold strain level is exceeded is developed. The channel geometry dependence of the corner flow in capillaric strain sensors (CSS) resulting in an electrofluidic switch is used. It is demonstrated that through the coalescence and breakup of a liquid meniscus, DigSS operates for hundreds of cycles with a strain limit of detection of 0.0026. To facilitate integration, a linear optimization‐based computer‐aided design tool for the integrated DigSS (iDigSS) is created. Experimental validation shows that the iDigSS distinguishes a target strain‐field profile from 35 of 36 theoretically distinguishable profiles without requiring signal processing. Human subject trials demonstrate the system's ability to differentiate a specific shoulder movement from five others and to wirelessly record wrist extension counts and durations.  more » « less
Award ID(s):
2045087
PAR ID:
10571945
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Sensor Research
Volume:
4
Issue:
4
ISSN:
2751-1219
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Capillaric strain sensors (CSSs) operate based on the volume expansion of closed microfluidic networks in response to linear strain and have tunable directionality and sensitivity in a large range. The unique advantages of CSSs for integrated sensor development can simplify the human movement recognition by eliminating the need for intensive computational power and reliance on machine learning algorithms. We borrowed strategies from electrical digital circuits for the integration of CSSs in OR and AND configurations. We have fabricated devices according to these strategies. To validate their functionality, we first performed tests on a benchtop model. We have mapped the strain field on the sensors using digital image correlation and used it in combination with a mathematical procedure that we have developed to accurately predict the response of the integrated CSSs (iCSSs). Finally, we have skin mounted the iCSS patches (2 × 2 cm 2 ) and conducted tests on a human subject. The results demonstrate that skin-strain-field mapping will be an enabling tool for iCSS design toward the recognition of human movements. 
    more » « less
  2. Abstract Wearable strain sensors for movement tracking are a promising paradigm to improve clinical care for patients with neurological or musculoskeletal conditions, with further applicability to athletic wear, virtual reality, and next‐generation game controllers. Clothing‐like wearable strain sensors can support these use cases, as the fabrics used for clothing are generally lightweight and breathable, and interface with the skin in a manner that is mechanically and thermally familiar. Herein, a fabric capacitive strain sensor is presented and integrated into everyday clothing to measure human motions. The sensor is made of thin layers of breathable fabrics and exhibits high strains (>90%), excellent cyclic stability (>5000 cycles), and high water vapor transmission rates (≈50 g/h m2), the latter of which allows for sweat evaporation, an essential parameter of comfort. The sensor's functionality is verified under conditions similar to those experienced on the surface of the human body (35°C and % relative humidity) and after washing with fabric detergent. In addition, the fabric sensor shows stable capacitance at excitation frequencies up to 1 MHz, facilitating its low‐cost implementation in the Arduino environment. Finally, as a proof of concept, multiple fabric sensors are seamlessly integrated with commercial activewear to collect movement data. With the prioritization of breathability (air permeability and water vapor transmission), the fabric sensor design presented herein paves the way for future comfortable, unobtrusive, and discrete sensory clothing. 
    more » « less
  3. Abstract The present work demonstrates the development of a flexible, self-powered sensor patch that can be used to estimate angular acceleration and angular velocity, which are two essential markers for predicting concussions. The device monitors the dynamic strain experienced by the neck through a thin, polypropylene-based ferroelectret nanogenerator that produces a voltage pulse with profile proportional to strain. The intrinsic property of this device to convert mechanical input to electrical output, along with its flexibility and$$\sim$$ 100$$\mu$$ μ m thickness makes it a viable and practical device to be used as a wearable patch for athletes in high-contact sports. After processing the dynamic behavior of the produced voltage, a correspondence between the electric signal profile and the measurements from accelerometers integrated inside a human head and neck substitute was found. This demonstrates the ability of obtaining an electronic signature that can be used to extract head kinematics during collision, and creates a marker that could be used to detect concussions. Unlike accelerometer-based current trends on concussion-detection systems, which rely on sensors integrated in the athlete’s helmet, the flexible patch attached to the neck would provide information on the dynamics of the head movement, thus eliminating the potential of false readings from helmet sliding or peak angular acceleration. 
    more » « less
  4. null (Ed.)
    The continuous monitoring of strain in fiber-reinforced composites while in service typically requires bonding a network of sensors to the surface of the composite structure. To eliminate such needs, and to reduce bulk and limit additional weight, this work utilizes the transfer printing of laser induced graphene (LIG) strain gauges onto the surface of commercial fiberglass prepreg for the in situ self-sensing of strain. The resultant embedded strain sensor is entirely integrated within the final composite material, therefore reducing weight and eliminating limitations due to external bonding compared to current alternatives. Additionally, the simple printing process used here allows for the customization of the size and sensing requirements for various applications. The LIG strain sensor is shown to be capable of tracking monotonic cyclic strain as shown during tensile loading and unloading of the host composite, while also proving capable of tracking the dynamic motion of the composite which is characterized via frequency response and sinusoidal base excitation. The LIG strain gauge in this work can thus be used for tracking either quasi-static or dynamic variations in strain for the determination of the deformation experienced by the material, as well as the frequency content of the material for structural health monitoring purposes. 
    more » « less
  5. null (Ed.)
    The continuous monitoring of strain in fiber-reinforced composites while in service typically requires bonding a network of sensors to the surface of the composite structure. To eliminate such needs, and to reduce bulk and limit additional weight, this work utilizes the transfer printing of laser induced graphene (LIG) strain gauges onto the surface of commercial fiberglass prepreg for the in situ self-sensing of strain. The resultant embedded strain sensor is entirely integrated within the final composite material, therefore reducing weight and eliminating limitations due to external bonding compared to current alternatives. Additionally, the simple printing process used here allows for the customization of the size and sensing requirements for various applications. The LIG strain sensor is shown to be capable of tracking monotonic cyclic strain as shown during tensile loading and unloading of the host composite, while also proving capable of tracking the dynamic motion of the composite which is characterized via frequency response and sinusoidal base excitation. The LIG strain gauge in this work can thus be used for tracking either quasi-static or dynamic variations in strain for the determination of the deformation experienced by the material, as well as the frequency content of the material for structural health monitoring purposes. 
    more » « less