Background: Understanding dependencies within microservices is essential for maintaining and evolving scalable and efficient software architectures. Dependencies influence how changes in one microservice might propagate to other microservices. With the decentralized nature of microservices, these dependencies might not be explicit to developers and lead to unique challenges in modern software development environments. Objective: The objective of this study is to synthesize existing literature on microservice dependencies, identify the types of dependencies, and examine the strategies employed to manage and analyze these relationships. This effort aims to elucidate how dependencies affect microservice systems and to provide a comprehensive overview of dependency management within microservices. Method: We conducted a multivocal literature review, starting with an initial dataset of 1,733 papers from academic literature (white literature). This corpus was narrowed down through a rigorous filtering process to 45 key publications that address the identification, management, and impacts of dependencies in microservices. Additionally, we incorporated 926 articles from grey literature sources such as Google, Stack Overflow, and Stack Exchange, expanding the scope beyond traditional academic research. After the filtration process, 45 articles were fully synthesized to integrate practical insights and professional experiences into our review. Results: The review identifies several types of dependencies in microservice systems and synthesizes this information into a unified dependency taxonomy. This review highlights a range of approaches to dependency management, revealing a significant gap in systematic catering approaches to generate taxonomies for dependencies and the need for integrated management tools. The findings underscore the fragmented nature of existing dependency management practices and the potential for more holistic approaches. Conclusion: This study provides valuable insights for researchers and practitioners, outlining effective strategies and pointing out areas needing improvement in dependency management. By offering a structured overview of the topic, the study serves as a roadmap for future research and development efforts to enhance the robustness and maintainability of microservices.
more »
« less
On Maintainability and Microservice Dependencies: How Do Changes Propagate? [On Maintainability and Microservice Dependencies: How Do Changes Propagate?]
- Award ID(s):
- 2409933
- PAR ID:
- 10572054
- Publisher / Repository:
- SCITEPRESS - Science and Technology Publications
- Date Published:
- ISBN:
- 978-989-758-701-6
- Page Range / eLocation ID:
- 277 to 286
- Format(s):
- Medium: X
- Location:
- Angers, France
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study evaluates a popular density current propagation speed equation using a large, novel set of radiosonde and dropsonde observations. Data from pairs of sondes launched inside and outside of cold pools along with the theoretical density current propagation speed equation are used to calculate sonde-based propagation speeds. Radar-/satellite-based propagation speeds, assumed to be the truth, are calculated by manually tracking the propagation of cold pools and correcting for advection due to the background wind. Several results arise from the comparisons of the theoretical sonde-based speeds with the radar-/satellite-based speeds. First, sonde-based and radar-based propagation speeds are strongly correlated for U.S. High Plains cold pools, suggesting the density current propagation speed equation is appropriate for use in midlatitude continental environments. Second, cold pool Froude numbers found in this study are in agreement with previous studies. Third, sonde-based propagation speeds are insensitive to how cold pool depth is defined since the preponderance of negative buoyancy is near the surface in cold pools. Fourth, assuming an infinite channel depth and assuming an incompressible atmosphere when deriving the density current propagation speed equation can increase sonde-based propagation speeds by up to 20% and 11%, respectively. Finally, sonde-based propagation speeds can vary by ∼300% based on where and when the sondes were launched, suggesting submesoscale variability could be a major influence on cold pool propagation.more » « less
An official website of the United States government

