For autistic individuals, navigating social and emotional interactions can be complex, often involving disproportionately high cognitive labor in contrast to neurotypical conversation partners. Through a novel approach to speculative co-design, autistic adults explored affective imaginaries — imagined futuristic technology interventions — to probe a provocative question: What if technology could translate emotions like it can translate spoken language? The resulting speculative prototype for an image-enabled emotion translator chat application included: (1) a visual system for representing personalized emotion taxonomies, and (2) a Wizard of Oz implementation of these taxonomies in a low-fidelity chat application. Although wary of technology that purports to understand emotions, autistic participants saw value in being able to deploy visual emotion taxonomies during chats with neurotypical conversation partners. This work shows that affective technology should enable users to: (1) curate encodings of emotions used in system artifacts, (2) enhance interactive emotional understanding, and (3) have agency over how and when to use emotion features. 
                        more » 
                        « less   
                    
                            
                            A Heterogeneous Multimodal Graph Learning Framework for Recognizing User Emotions in Social Networks
                        
                    
    
            The rapid expansion of social media platforms has provided unprecedented access to massive amounts of multimodal user-generated content. Comprehending user emotions can provide valuable insights for improving communication and understanding of human behaviors. Despite significant advancements in Affective Computing, the diverse factors influencing user emotions in social networks remain relatively understudied. Moreover, there is a notable lack of deep learning-based methods for predicting user emotions in social networks, which could be addressed by leveraging the extensive multimodal data available. This work presents a novel formulation of personalized emotion prediction in social networks based on heterogeneous graph learning. Building upon this formulation, we design HMG-Emo, a Heterogeneous Multimodal Graph Learning Framework that utilizes deep learning-based features for user emotion recognition. Additionally, we include a dynamic context fusion module in HMG-Emo that is capable of adaptively integrating the different modalities in social media data. Through extensive experiments, we demonstrate the effectiveness of HMG-Emo and verify the superiority of adopting a graph neural network-based approach, which outperforms existing baselines that use rich hand-crafted features. To the best of our knowledge, HMG-Emo is the first multimodal and deep-learning-based approach to predict personalized emotions within online social networks. Our work highlights the significance of exploiting advanced deep learning techniques for less-explored problems in Affective Computing. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2234195
- PAR ID:
- 10572193
- Publisher / Repository:
- Proceedings of the International Conference on Affective Computing and Intelligent Interaction
- Date Published:
- Format(s):
- Medium: X
- Location:
- Glasgow
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Gurney, Nikolos; Sukthankar, Gita (Ed.)Computational emotion, is naturally predicated on an operating theory of emotion. This paper seeks to explore the prevalence of three different approaches in the literature, namely basic emotion, dimensional emotion, and constructed emotion. Basic emotion maintains that there exists a discrete set of primitive emotions evolved as responses to certain stimuli; dimensional emotion sees different emotions as systematically related by two or more dimensions (typically valence and arousal); and constructed emotion describes emotional experience as a function of the brain’s general predictive faculties applied to learned social concepts of different emotions. In order to see how these approaches are represented in affective computing literature, we conduct a systematic survey spanning the IEEE, ACM, ScienceDirect, and Engineering Village databases. Out of 204 selected papers, 151 apply basic emotion theory, 48 apply dimensional emotion, and 5 apply constructed emotion. We find promising representation of the constructed emotion theory in the affective computing literature and conclude that it provides a theoretical basis worth pursuing for affective engagement human computer interaction (HCI) applications.more » « less
- 
            null (Ed.)The key role of emotions in human life is undeniable. The question of whether there exists a brain pattern associated with a specific emotion is the theme of many affective neuroscience studies. In this work, we bring to bear graph signal processing (GSP) techniques to tackle the problem of automatic emotion recognition using brain signals. GSP is an extension of classical signal processing methods to complex networks where there exists an inherent relation graph. With the help of GSP, we propose a new framework for learning class-specific discriminative graphs. To that end, firstly we assume for each class of observations there exists a latent underlying graph representation. Secondly, we consider the observations are smooth on their corresponding class-specific sough graph while they are non-smooth on other classes’ graphs. The learned class-specific graph-based representations can act as sub-dictionaries and be utilized for the task of emotion classification. Applying the proposed method on an electroencephalogram (EEG) emotion recognition dataset indicates the superiority of our framework over other state-of-the-art methods.more » « less
- 
            What should we do with emotion AI? Should we regulate, ban, promote, or re-imagine it? Emotion AI, a class of affective computing technologies used in personal and social computing, comprises emergent and controversial techniques aiming to classify human emotion and other affective phenomena. Industry, policy, and scientific actors debate potential benefits and harms, arguing for polarized futures ranging from panoptic expansion to complete bans. Emotion AI is proposed, deployed, and sometimes withdrawn in collaborative contexts such as education, hiring, healthcare, and service work. Proponents expound these technologies’ benefits for well-being and security, while critics decry privacy harms, civil liberties risks, bias, and shaky scientific foundations, and gaps between technologies’ capabilities and how they are marketed and legitimized. This panel brings diverse disciplinary perspectives into discussion about the history of emotions—as an example of ’intimate’ data—in computing, how emotion AI is legitimized, people’s experiences with and perceptions of emotion AI in social and collaborative settings, emotion AI’s development practices, and using design research to re-imagine emotion AI. These issues are relevant to the CSCW community in designing, evaluating, and regulating algorithmic sensing technologies including and beyond emotion-sensing.more » « less
- 
            One of the grand challenges of artificial intelligence and affective computing is for technology to become emotionally-aware and thus, more human-like. Modeling human emotions is particularly complicated when we consider the lived experiences of people who are on the autism spectrum. To understand the emotional experiences of autistic adults and their attitudes towards common representations of emotions, we deployed a context study as the first phase of a Grounded Design research project. Based on community observations and interviews, this work contributes empirical evidence of how the emotional experiences of autistic adults are entangled with social interactions as well as the processing of sensory inputs. We learned that (1) the emotional experiences of autistic adults are embodied and co-constructed within the context of physical environments, social relationships, and technology use, and (2) conventional approaches to visually representing emotion in affective education and computing systems fail to accurately represent the experiences and perceptions of autistic adults. We contribute a social-emotional-sensory design map to guide designers in creating more diverse and nuanced affective computing interfaces that are enriched by accounting for neurodivergent users.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    