skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Power of Adaptivity for Function Inversion
We study the problem of function inversion with preprocessing where, given a function f : [N] → [N] and a point y in its image, the goal is to find an x such that f(x) = y using at most T oracle queries to f and S bits of preprocessed advice that depend on f. The seminal work of Corrigan-Gibbs and Kogan [TCC 2019] initiated a line of research that shows many exciting connections between the non-adaptive setting of this problem and other areas of theoretical computer science. Specifically, they introduced a very weak class of algorithms (strongly non-adaptive) where the points queried by the oracle depend only on the inversion point y, and are independent of the answers to the previous queries and the S bits of advice. They showed that proving even mild lower bounds on strongly non-adaptive algorithms for function inversion would imply a breakthrough result in circuit complexity. We prove that every strongly non-adaptive algorithm for function inversion (and even for its special case of permutation inversion) must have ST = Ω(N log (N) log (T)). This gives the first improvement to the long-standing lower bound of ST = Ω(N log N) due to Yao [STOC 90]. As a corollary, we conclude the first separation between strongly non-adaptive and adaptive algorithms for permutation inversion, where the adaptive algorithm by Hellman [TOIT 80] achieves the trade-off ST = O(N log N). Additionally, we show equivalence between lower bounds for strongly non-adaptive data structures and the one-way communication complexity of certain partial functions. As an example, we recover our lower bound on function inversion in the communication complexity framework.  more » « less
Award ID(s):
2338730
PAR ID:
10572269
Author(s) / Creator(s):
; ;
Editor(s):
Aggarwal, Divesh
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
304
ISSN:
1868-8969
ISBN:
978-3-95977-333-1
Page Range / eLocation ID:
304-304
Subject(s) / Keyword(s):
Function Inversion Non-Adaptive lower bounds Communication Complexity Theory of computation → Cryptographic primitives
Format(s):
Medium: X Size: 10 pages; 590067 bytes Other: application/pdf
Size(s):
10 pages 590067 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Lysyanskaya, Anna; Handschuh, Helena (Ed.)
    We study the black-box function inversion problem, which is the problem of finding x[N] such that f(x)=y, given as input some challenge point y in the image of a function f:[N][N], using T oracle queries to f and preprocessed advice 01S depending on f. We prove a number of new results about this problem, as follows. 1. We show an algorithm that works for any T and S satisfying TS2maxST=(N3) . In the important setting when ST, this improves on the celebrated algorithm of Fiat and Naor [STOC, 1991], which requires TS3N3. E.g., Fiat and Naor's algorithm is only non-trivial for SN23 , while our algorithm gives a non-trivial tradeoff for any SN12 . (Our algorithm and analysis are quite simple. As a consequence of this, we also give a self-contained and simple proof of Fiat and Naor's original result, with certain optimizations left out for simplicity.) 2. We show a non-adaptive algorithm (i.e., an algorithm whose ith query xi is chosen based entirely on and y, and not on the f(x1)f(xi−1)) that works for any T and S satisfying S=(Nlog(NT)) giving the first non-trivial non-adaptive algorithm for this problem. E.g., setting T=Npolylog(N) gives S=(NloglogN). This answers a question due to Corrigan-Gibbs and Kogan [TCC, 2019], who asked whether it was possible for a non-adaptive algorithm to work with parameters T and S satisfying T+SlogNo(N) . We also observe that our non-adaptive algorithm is what we call a guess-and-check algorithm, that is, it is non-adaptive and its final output is always one of the oracle queries x1xT. For guess-and-check algorithms, we prove a matching lower bound, therefore completely characterizing the achievable parameters (ST) for this natural class of algorithms. (Corrigan-Gibbs and Kogan showed that any such lower bound for arbitrary non-adaptive algorithms would imply new circuit lower bounds.) 3. We show equivalence between function inversion and a natural decision version of the problem in both the worst case and the average case, and similarly for functions f:[N][M] with different ranges. All of the above results are most naturally described in a model with shared randomness (i.e., random coins shared between the preprocessing algorithm and the online algorithm). However, as an additional contribution, we show (using a technique from communication complexity due to Newman [IPL, 1991]) how to generically convert any algorithm that uses shared randomness into one that does not. 
    more » « less
  2. Santhanam, Rahul (Ed.)
    Adversarially robust streaming algorithms are required to process a stream of elements and produce correct outputs, even when each stream element can be chosen as a function of earlier algorithm outputs. As with classic streaming algorithms, which must only be correct for the worst-case fixed stream, adversarially robust algorithms with access to randomness can use significantly less space than deterministic algorithms. We prove that for the Missing Item Finding problem in streaming, the space complexity also significantly depends on how adversarially robust algorithms are permitted to use randomness. (In contrast, the space complexity of classic streaming algorithms does not depend as strongly on the way randomness is used.) For Missing Item Finding on streams of length 𝓁 with elements in {1,…,n}, and ≤ 1/poly(𝓁) error, we show that when 𝓁 = O(2^√{log n}), "random seed" adversarially robust algorithms, which only use randomness at initialization, require 𝓁^Ω(1) bits of space, while "random tape" adversarially robust algorithms, which may make random decisions at any time, may use O(polylog(𝓁)) random bits. When 𝓁 is between n^Ω(1) and O(√n), "random tape" adversarially robust algorithms need 𝓁^Ω(1) space, while "random oracle" adversarially robust algorithms, which can read from a long random string for free, may use O(polylog(𝓁)) space. The space lower bound for the "random seed" case follows, by a reduction given in prior work, from a lower bound for pseudo-deterministic streaming algorithms given in this paper. 
    more » « less
  3. Guruswami, Venkatesan (Ed.)
    Inspired by the classic problem of Boolean function monotonicity testing, we investigate the testability of other well-studied properties of combinatorial finite set systems, specifically intersecting families and union-closed families. A function f: {0,1}ⁿ → {0,1} is intersecting (respectively, union-closed) if its set of satisfying assignments corresponds to an intersecting family (respectively, a union-closed family) of subsets of [n]. Our main results are that - in sharp contrast with the property of being a monotone set system - the property of being an intersecting set system, and the property of being a union-closed set system, both turn out to be information-theoretically difficult to test. We show that: - For ε ≥ Ω(1/√n), any non-adaptive two-sided ε-tester for intersectingness must make 2^{Ω(n^{1/4}/√{ε})} queries. We also give a 2^{Ω(√{n log(1/ε)})}-query lower bound for non-adaptive one-sided ε-testers for intersectingness. - For ε ≥ 1/2^{Ω(n^{0.49})}, any non-adaptive two-sided ε-tester for union-closedness must make n^{Ω(log(1/ε))} queries. Thus, neither intersectingness nor union-closedness shares the poly(n,1/ε)-query non-adaptive testability that is enjoyed by monotonicity. To complement our lower bounds, we also give a simple poly(n^{√{nlog(1/ε)}},1/ε)-query, one-sided, non-adaptive algorithm for ε-testing each of these properties (intersectingness and union-closedness). We thus achieve nearly tight upper and lower bounds for two-sided testing of intersectingness when ε = Θ(1/√n), and for one-sided testing of intersectingness when ε = Θ(1). 
    more » « less
  4. In the permutation inversion problem, the task is to find the preimage of some challenge value, given oracle access to the permutation. This fundamental problem in query complexity appears in many contexts, particularly cryptography. In this work, we examine the setting in which the oracle allows for quantum queries to both the forward and the inverse direction of the permutation—except that the challenge value cannot be submitted to the latter. Within that setting, we consider three options for the inversion algorithm: whether it can get quantum advice about the permutation, whether the query algorithm can restrict the distribution with which the challenge input is sampled, and whether it must produce the entire preimage (search) or only the first bit (decision). We prove several theorems connecting the hardness of the resulting variations of the permutation inversion problem and establish lower bounds for them. Our results show that, perhaps surprisingly, the permutation inversion problem does not become significantly easier when the adversary is granted oracle access to the inverse—provided it cannot query the challenge itself. 
    more » « less
  5. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    Many streaming algorithms provide only a high-probability relative approximation. These two relaxations, of allowing approximation and randomization, seem necessary - for many streaming problems, both relaxations must be employed simultaneously, to avoid an exponentially larger (and often trivial) space complexity. A common drawback of these randomized approximate algorithms is that independent executions on the same input have different outputs, that depend on their random coins. Pseudo-deterministic algorithms combat this issue, and for every input, they output with high probability the same "canonical" solution. We consider perhaps the most basic problem in data streams, of counting the number of items in a stream of length at most n. Morris’s counter [CACM, 1978] is a randomized approximation algorithm for this problem that uses O(log log n) bits of space, for every fixed approximation factor (greater than 1). Goldwasser, Grossman, Mohanty and Woodruff [ITCS 2020] asked whether pseudo-deterministic approximation algorithms can match this space complexity. Our main result answers their question negatively, and shows that such algorithms must use Ω(√{log n / log log n}) bits of space. Our approach is based on a problem that we call Shift Finding, and may be of independent interest. In this problem, one has query access to a shifted version of a known string F ∈ {0,1}^{3n}, which is guaranteed to start with n zeros and end with n ones, and the goal is to find the unknown shift using a small number of queries. We provide for this problem an algorithm that uses O(√n) queries. It remains open whether poly(log n) queries suffice; if true, then our techniques immediately imply a nearly-tight Ω(log n/log log n) space bound for pseudo-deterministic approximate counting. 
    more » « less