The future of economic and national security, commerce, and technology are becoming more dependent on quantum information science (QIS). In addition to traditional STEM fields, there will be a broad need to develop a "quantum smart" workforce, and this development needs to begin before college. Since most students will not major in physics, it is vital to expose precollege students to quantum concepts that are relevant to everyday experiences with information security, smart phones, computers, and other widely used technology. This project, funded by the US National Science Foundation, provides opportunities for students to learn about various aspects of quantum science, regardless of whether they take a physics class. This project provides opportunities for secondary educators to learn and practice QIS. Project partners include universities, businesses, and professional organizations such as Science Teacher Association in Utah and Texas, American Association of Physics Teachers, Institute for Quantum Computing, and Perimeter Institute for Theoretical Physics. In particular, we utilize a trainer of trainer approach, however, the teacher professional development is tied to summer camp experience for students during which the teachers can test their delivery of the material with students in the summer camp. In this paper we will discuss the content areas and provide an outline of the professional development model. 
                        more » 
                        « less   
                    
                            
                            THE QUANTUM FOR ALL PROJECT: STUDENT LEARNING IN THE SUMMER CAMPS
                        
                    
    
            Quantum information science (QIS) undergirds a set of critical technologies that will affect information security, smart phones, computers, and other widely used technology. There is a broad need to develop a "quantum smart" workforce in addition to traditional STEM fields, and this development needs to occur in precollege education. The US National Science Foundation has funded the Quantum for All project to provide professional development opportunities for STEM educators to learn about QIS and how to implement it in the classroom. The teacher professional development is tied to summer camp experience for students during which the teachers can test their delivery of the material with students in the summer camp. In this paper we will discuss the outcomes for students in the summer camp for the various content areas presented and relate that back to results of research on teachers and their performance in the professional development experience. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2048691
- PAR ID:
- 10572347
- Publisher / Repository:
- IATED
- Date Published:
- Page Range / eLocation ID:
- 5961 to 5965
- Format(s):
- Medium: X
- Location:
- Palma, Spain
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Quantum information science (QIS) is critical to the future of economic and national security, commerce, and technology). There is a broad need to develop a "quantum smart" workforce with some on critical topics, such as quantum concepts that are relevant to everyday experiences in information security, smart phones, computers, and other widely used technology. The Quantum for All project, funded by the US National Science Foundation, provides opportunities for students to learn about various aspects of quantum science by providing professional development for STEM educators to learn and practice QIS. We utilize a trainer of trainer approach. In this paper we will discuss the content areas and provide an outline of the professional development model. We will also examine growth in teacher content knowledge and their confidence in that content knowledge. Our preliminary results are that the workshops are effective in raising both metrics as measured by pre- and post-surveys, however, there are differences between the content areas. We will examine these differences and provide possible reasons for the results.more » « less
- 
            Quantum information science (QIS) is of growing importance to economic and national security, commerce, and technology. The development of a "quantum smart" workforce needs to begin before college since most students will not major in physics. Thus, it is vital to expose K-12 students to quantum concepts that are relevant to everyday experiences with credit card security, phones, computers, and basic technology and to prepare teachers to teach this content. The logical venue for exposure to basic ideas in quantum science might be a high school physics course, or even a physical science course if a full physics course is not offered. Professional development (PD) for educators typically includes 1-2 weeks of intensive instruction, usually in the summer. Teachers are then expected to remember what they learned and implement it several months after the PD. The model is based on prior research indicating that an educator needs a minimum of 80 hours of PD to become comfortable enough to implement the new instruction in their classroom. However, little research has been done as to how much they actually implement. For the past three years, we have been engaged in a project funded by the US National Science Foundation to build mechanisms (materials and PD strategies) for educating a quantum-ready workforce. Our PD model is based on pedagogical techniques used in classrooms, specifically the components of learn then practice in order to avoid cognitive overload. Instruction is more effective when the learners (teachers or students) are given opportunities to actively engage in the learning process through interaction/collaboration with peers, exploring challenges, and practicing what they have learned. This paper will share the logistics of our new PD new model, challenges, finding from our current research, and implications for future PD in K-16.more » « less
- 
            null (Ed.)This paper will share the design of a learning environment that uses flight simulator-based activities designed to cognitively engage middle school students. The flight simulator provides an exciting, realistic, and engaging learning experience. It allows students to recognize the linkage between the concepts and application in real-world. Lesson plans were developed for several math and physics concepts integrating the flight simulator activities. To ensure buy-in for classroom implementation, the topics of these lessons were identified in consultation with the local middle school STEM teachers. Professional development on using the pedagogical approach was then provided to teachers from the middle schools that serve primarily underrepresented populations. Middle school students experienced the learning environment as part of a summer camp to deeply understand some science and math concepts. A quasi experimental between-subjects research design was used. Pre-post content and attitude instruments were utilized to collect data for determining the effectiveness of the approach. This paper provides an updated analysis (N = 50) combining the previously reported data from the 2017 camp and the implementation results of the summer 2018 camp. Results indicated statistically significant gains in students’ content knowledge and positive changes in attitudes of mainly female students towards science, technology, engineering and math.more » « less
- 
            Technological advances in computer vision and machine learning image and audio classification will continue to improve and evolve. Despite their prevalence, teachers feel ill-prepared to use these technologies to support their students’ learning. To address this, in-service middle school teachers participated in professional development, and middle school students participated in summer camp experiences that included the use of Google’s Teachable Machine, an easy-to-use interface for training machine learning classification models. An overview of Teachable Machine is provided. As well, lessons that highlight the use of Teachable Machine in middle school science are explained. Framed within Personal Construct Theory, an analysis of the impact of the professional development on middle school teachers’ perceptions (n = 17) of science lessons and activities is provided. Implications for future practice and future research are described.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    