Abstract Evolutionary innovations have played an important role in shaping the diversity of life on Earth. However, how these innovations arise and their downstream effects on patterns of morphological diversification remain poorly understood. Here, we examine the impact of evolutionary innovation on trait diversification in tetraodontiform fishes (pufferfishes, boxfishes, ocean sunfishes, and allies). This order provides an ideal model system for studying morphological diversification owing to their range of habitats and divergent morphologies, including the fusion of the teeth into a beak in several families. Using three-dimensional geometric morphometric data for 176 extant and fossil species, we examine the effect of skull integration and novel habitat association on the evolution of innovation. Strong integration may be a requirement for rapid trait evolution and facilitating the evolution of innovative structures, like the tetraodontiform beak. Our results show that the beak arose in the presence of highly conserved patterns of integration across the skull, suggesting that integration did not limit the range of available phenotypes to tetraodontiforms. Furthermore, we find that beaks have allowed tetraodontiforms to diversify into novel ecological niches, irrespective of habitat. Our results suggest that general rules pertaining to evolutionary innovation may be more nuanced than previously thought.
more »
« less
Transitions Into Freezing Environments Linked With Shifts in Phylogenetic Integration Between Vitaceae Leaf Traits
ABSTRACT Understanding how the intrinsic ability of populations and species to meet shifting selective demands shapes evolutionary patterns over both short and long timescales is a major question in biology. One major axis of evolutionary flexibility can be measured by phenotypic integration and modularity. The strength, scale, and structure of integration may constrain or catalyze evolution in the face of new selective pressures. We analyze a dataset of seven leaf measurements across Vitaceae to examine how correlations in trait divergence are linked to transitions between freezing and nonfreezing habitats. We assess this by applying a custom algorithm to compare the timing of habitat shifts to changes in the structure of evolutionary trait correlation at discrete points along a phylogeny. We also explore these patterns in relation to lineage diversification rates to understand how and whether patterns in the evolvability of complex multivariate phenotypes are linked to higher‐level macroevolutionary dynamics. We found that shifts in the structure, but not the overall strength, of phylogenetic integration of leaves precipitate colonization of freezing climates. Lineages that underwent associated shifts in leaf trait integration and subsequent movement into freezing habitats also displayed lower turnover and higher net diversification, suggesting a link among shifting vectors of selection, internal constraint, and lineage persistence in the face of changing environments.
more »
« less
- PAR ID:
- 10572415
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 14
- Issue:
- 11
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Quaternary climate change has been strongly linked to distributional shifts and recent species diversification. Montane species, in particular, have experienced enhanced isolation and rapid genetic divergence during glacial fluctuations, and these processes have resulted in a disproportionate number of neo‐endemic species forming in high‐elevation habitats. In temperate montane environments, a general model of alpine population history is well supported, where cold‐specialized species track favourable climate conditions downslope during glacial episodes and upslope during warmer interglacial periods, which leads to a climate‐driven population or species diversification pump. However, it remains unclear how geography mediates distributional changes and whether certain episodes of glacial history have differentially impacted rates of diversification. We address these questions by examining phylogenomic data in a North American clade of flightless, cold‐specialized insects, the ice crawlers (Insecta: Grylloblattodea: Grylloblattidae:Grylloblatta). These low‐vagility organisms have the potential to reveal highly localized refugia and patterns of spatial recolonization, as well as a longer history of in situ diversification. Using continuous phylogeographic analysis of species groups, we show that all species tend to retreat to nearby low‐elevation habitats across western North America during episodes of glaciation, but species at high latitude exhibit larger distributional shifts. Lineage diversification was examined over the course of the Neogene and Quaternary periods, with statistical analysis supporting a direct association between climate variation and diversification rate. Major increases in lineage diversification appear to be correlated with warm and dry periods, rather than with extreme glacial events. Finally, we identify substantial cryptic diversity among ice crawlers, leading to high endemism across their range. This diversity provides new insights into highly localized glacial refugia for cold‐specialized species across western North America.more » « less
-
null (Ed.)Evolutionary innovations are scattered throughout the tree of life, and have allowed the organisms that possess them to occupy novel adaptive zones. While the impacts of these innovations are well documented, much less is known about how these innovations arise in the first place. Patterns of covariation among traits across macroevolutionary time can offer insights into the generation of innovation. However, to date, there is no consensus on the role that trait covariation plays in this process. The evolution of cranial asymmetry in flatfishes (Pleuronectiformes) from within Carangaria was a rapid evolutionary innovation that preceded the colonization of benthic aquatic habitats by this clade, and resulted in one of the most bizarre body plans observed among extant vertebrates. Here, we use three-dimensional geometric morphometrics and a phylogenetic comparative toolkit to reconstruct the evolution of skull shape in carangarians, and quantify patterns of integration and modularity across the skull. We find that the evolution of asymmetry in flatfishes was a rapid process, resulting in the colonization of novel trait space, that was aided by strong integration that coordinated shape changes across the skull. Our findings suggest that integration plays a major role in the evolution of innovation by synchronizing responses to selective pressures across the organism.more » « less
-
Abstract Complex structures, like the vertebrate skull, are composed of numerous elements or traits that must develop and evolve in a coordinated manner to achieve multiple functions. The strength of association among phenotypic traits (i.e., integration), and their organization into highly-correlated, semi-independent subunits termed modules, is a result of the pleiotropic and genetic correlations that generate traits. As such, patterns of integration and modularity are thought to be key factors constraining or facilitating the evolution of phenotypic disparity by influencing the patterns of variation upon which selection can act. It is often hypothesized that selection can reshape patterns of integration, parceling single structures into multiple modules or merging ancestrally semi-independent traits into a strongly correlated unit. However, evolutionary shifts in patterns of trait integration are seldom assessed in a unified quantitative framework. Here, we quantify patterns of evolutionary integration among regions of the archosaur skull to investigate whether patterns of cranial integration are conserved or variable across this diverse group. Using high-dimensional geometric morphometric data from 3D surface scans and computed tomography scans of modern birds (n = 352), fossil non-avian dinosaurs (n = 27), and modern and fossil mesoeucrocodylians (n = 38), we demonstrate that some aspects of cranial integration are conserved across these taxonomic groups, despite their major differences in cranial form, function, and development. All three groups are highly modular and consistently exhibit high integration within the occipital region. However, there are also substantial divergences in correlation patterns. Birds uniquely exhibit high correlation between the pterygoid and quadrate, components of the cranial kinesis apparatus, whereas the non-avian dinosaur quadrate is more closely associated with the jugal and quadratojugal. Mesoeucrocodylians exhibit a slightly more integrated facial skeleton overall than the other grades. Overall, patterns of trait integration are shown to be stable among archosaurs, which is surprising given the cranial diversity exhibited by the clade. At the same time, evolutionary innovations such as cranial kinesis that reorganize the structure and function of complex traits can result in modifications of trait correlations and modularity.more » « less
-
Abstract Why and how organismal lineages radiate is commonly studied through either assessing abiotic factors (biogeography, geomorphological processes, and climate) or biotic factors (traits and interactions). Despite increasing awareness that both abiotic and biotic processes may have important joint effects on diversification dynamics, few attempts have been made to quantify the relative importance and timing of these factors, and their potentially interlinked direct and indirect effects, on lineage diversification. We here combine assessments of historical biogeography, geomorphology, climatic niche, vegetative, and floral trait evolution to test whether these factors jointly, or in isolation, explain diversification dynamics of a Neotropical plant clade (Merianieae, Melastomataceae). After estimating ancestral areas and the changes in niche and trait disparity over time, we employ Phylogenetic Path Analyses as a synthesis tool to test eleven hypotheses on the individual direct and indirect effects of these factors on diversification rates. We find strongest support for interlinked effects of colonization of the uplifting Andes during the mid-Miocene and rapid abiotic climatic niche evolution in explaining a burst in diversification rate in Merianieae. Within Andean habitats, later increases in floral disparity allowed for the exploitation of wider pollination niches (i.e., shifts from bee to vertebrate pollinators), but did not affect diversification rates. Our approach of including both vegetative and floral trait evolution, rare in assessments of plant diversification in general, highlights that the evolution of woody habit and larger flowers preceded the colonization of the Andes, but was likely critical in enabling the rapid radiation in montane environments. Overall, and in concert with the idea that ecological opportunity is a key element of evolutionary radiations, our results suggest that a combination of rapid niche evolution and trait shifts was critical for the exploitation of newly available niche space in the Andes in the mid-Miocene. Further, our results emphasize the importance of incorporating both abiotic and biotic factors into the same analytical framework if we aim to quantify the relative and interlinked effects of these processes on diversification.more » « less
An official website of the United States government
