skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of Heat Treatment on Microstructure, Mechanical Properties, and Damping Behavior of 2024 Aluminum Matrix Composites Reinforced by Carbon Nanoparticles
Nanocarbon 2024 aluminum composites with 0.5 vol. % and 1 vol. % of graphene nanoplatelets and 1 vol. % and 2 vol. % of activated nanocarbon were manufactured through induction casting. The effect of the reinforcements and heat treatment on the performance of the composites was examined. Analysis of the microstructure of the composites before heat treatment suggested the homogeneous dispersion of reinforcements and the absence of secondary carbide or oxide phases. The presence of carbon nanoparticles had a significant impact on the microstructural characteristics of the matrix. This behavior was further enhanced after the heat treatment. The mechanical and damping properties were evaluated with the uniaxial compression test, micro Vickers hardness test, and dynamic mechanical analysis. The yield strength and ultimate strength were improved up to 28% (1 vol. % of graphene nanoplatelets) and 45% (0.5 vol. % of graphene nanoplatelets), respectively, compared to the as-cast 2024 aluminum. Similarly, compared to the heat-treated 2024 aluminum, the composites increased up to 56% (0.5 vol. % of graphene nanoplatelets) and 57% (0.5 vol. % of graphene nanoplatelets) in yield strength and ultimate strength, respectively. Likewise, the hardness of the samples was up to 33% (1 vol. % of graphene nanoplatelets) higher than that of the as-cast 2024 aluminum, and up to 31% (2 vol. % of activated nanocarbon) with respect to the heat-treated 2024 aluminum. The damping properties of the nanocarbon–aluminum composites were determined at variable temperatures and strain amplitudes. The results indicate that damping properties improved for the composites without heat treatment. As a result, it is demonstrated that using small volume fractions of nanocarbon allotropes enhanced the mechanical properties for both with- and without-heat treatment with a limited loss of plastic deformation before failure for the 2024 aluminum matrix.  more » « less
Award ID(s):
2138459
PAR ID:
10572796
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Nanomaterials
Volume:
14
Issue:
16
ISSN:
2079-4991
Page Range / eLocation ID:
1342
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 6061 aluminum composites with 0.5 and 1 vol. % graphene nanoplatelets as well as 1 and 2 vol. % activated nanocarbon were manufactured by a powder metallurgy method. Scanning electron microscopy and Raman spectroscopy were used to study the morphology, structure, and distribution of nanocarbon reinforcements in the composite samples. Density Functional Theory (DFT) calculations were performed to understand the aluminum-carbon bonding and the effects of hybridized networks of carbon atoms on nanocarbon aluminum matrix composites. Scanning electron microscopy showed the good distribution and low agglomeration tendencies of nanoparticles in the composites. The formation of secondary phases at the materials interface was not detected in the hot-pressed composites. Raman spectroscopy showed structural changes in the reinforced composites after the manufacturing process. The results from Density Functional Theory calculations suggest that it is thermodynamically possible to form carbon rings in the aluminum matrix, which may be responsible for the improved mechanical strength. Our results also suggest that these carbon networks are graphene-like, which also agrees with the Raman spectroscopy data. Micro-Vickers hardness and compressive tests were used to determine the mechanical properties of the samples. Composites presented enhanced hardness, yield and ultimate strength compared to the 6061 aluminum alloy with no nanocarbon reinforcement. Ductility was also affected, as shown by the reduction in elongation and by the number of dimples in the fractured surfaces of the materials. 
    more » « less
  2. This investigation systematically examines the influence of sintering temperature and aging treatment on the density, microstructure evolution, phase formation, and mechanical properties of a binder jet printed Co-Cr-Mo biomedical alloy. Sintering at 1380 °C for 2 h yielded a near-fully dense part (99.1%) with favorable mechanical properties (up to 325 HV0.1 hardness and up to 693 MPa ultimate tensile strength). The grain size remained unchanged after aging at 800 °C for 24 h (89 ± 21 µm). Aging resulted in increased microhardness and tensile strength due to phase formation (Cr23C6, CrMo, and ε phase), but a significant decrease in ductility. Consequently, the sintered and aged specimen exhibited higher hardness (522 HV0.1), yield strength (641 MPa), and ultimate tensile strength (854 MPa) compared to cast Co-Cr-Mo alloy. Biocompatibility testing with fibroblasts showed a cell viability of 95 ± 2%, indicating that binder jet printing did not affect the biocompatibility of the Co-Cr-Mo alloy. Exemplary printed parts including hip-joint, partial denture, and small-scale knee joint were successfully demonstrated. This study highlights the comparable properties of binder jet Co-Cr-Mo alloy to the cast alloy, affirming its potential for biomedical applications. 
    more » « less
  3. Carbon nanotubes (CNTs), as they possess outstanding mechanical properties and low density, are considered as one of the most promising reinforcements in composite structures. Due to their capability of transferring loads, CNTs in long continuous forms such as yarns and tapes can withstand 20 times as much load as steel can do at the same weight. In this research, carbon nanotube yarns were wound onto an aluminum plate using a custom-built fixture to fabricate a unidirectional strip. Then, by brushing epoxy resin on the strip and laminating four layers, the unidirectional CNT reinforced epoxy resin composite beam specimens were produced. The mechanical properties of the unidirectional CNT-reinforced composite (CNTRC) were determined using standard tensile tests. This study presents a method for manufacturing CNTRC out of CNT yarns, determining the CNTRC’s Young’s modulus as well as the tensile strength, and obtaining its strain field via digital image correlation (DIC) method. It is observed that the pressure due to sandwiching of the aluminum plates during the manufacturing process leads to nonuniformity of the specimen in the width along midspan of the longitudinal direction which results in the specimen’s not being perfectly unidirectional. This phenomenon can cause the matrix cracking in tensile test and reduce the ultimate tensile strength up to 78% in comparison with perfectly unidirectional specimens. However, the Young’s modulus of such composites is comparable with those obtained from previously existing research. Also, Results from DIC showed the possible failure prone areas in the specimens, as it presents a up to 64% difference between the highest and lowest strain in the tensile loading direction through the specimens. This study will serve as a foundation for future research involving CNT composites, particularly the use of their high anisotropy to produce auxetic composites with large negative Poisson’s ratios. 
    more » « less
  4. High-entropy alloys (HEAs) with good ductility and high strength are usually prepared by a combination of forging and heat-treatment processes. In comparison, the as-cast HEAs typically do not reach strengths similar to those of HEAs produced by the forging and heat-treatment processes. Here we report a novel equiatomic-ratio CoCrCuMnNi HEA prepared by vacuum arc melting. We observe that this HEA has excellent mechanical properties, i.e. , a yield strength of 458 MPa, and an ultimate tensile strength of 742 MPa with an elongation of 40%. Many nanometer precipitates (5–50 nm in size) and domains (5–10 nm in size) are found in the inter-dendrite and dendrite zones of the produced HEA, which is the key factor for its excellent mechanical properties. The enthalpy of mixing between Cu and Mn, Cr, Co, or Ni is higher than those of mixing between any two of Cr, Co, Ni and Mn, which leads to the separation of Cu from the CoCrCuMnNi HEA. Furthermore, we reveal the nanoscale-precipitate-phase-forming mechanism in the proposed HEA. 
    more » « less
  5. Additively manufactured (AM) composites based on short carbon fibers possess strength and stiffness far less than their continuous fiber counterparts due to the fiber’s small aspect ratio and inadequate interfaces with the epoxy matrix. This investigation presents a route for preparing hybrid reinforcements for AM that comprise short carbon fibers and nickel-based metal-organic frameworks (Ni-MOFs). The porous MOFs furnish the fibers with tremendous surface area. Additionally, the MOFs growth process is non-destructive to the fibers and easily scalable. This investigation also demonstrates the viability of using Ni-based MOFs as a catalyst for growing multi-walled carbon nanotubes (MWCNTs) on carbon fibers. The changes to the fiber were examined via electron microscopy, X-ray scattering techniques, and Fourier-transform infrared spectroscopy (FTIR). The thermal stabilities were probed by thermogravimetric analysis (TGA). Tensile and dynamic mechanical analysis (DMA) tests were utilized to explore the effect of MOFs on the mechanical properties of 3D-printed composites. Composites with MOFs exhibited improvements in stiffness and strength by 30.2% and 19.0%, respectively. The MOFs enhanced the damping parameter by 700%. 
    more » « less