skip to main content

Title: An as-cast high-entropy alloy with remarkable mechanical properties strengthened by nanometer precipitates
High-entropy alloys (HEAs) with good ductility and high strength are usually prepared by a combination of forging and heat-treatment processes. In comparison, the as-cast HEAs typically do not reach strengths similar to those of HEAs produced by the forging and heat-treatment processes. Here we report a novel equiatomic-ratio CoCrCuMnNi HEA prepared by vacuum arc melting. We observe that this HEA has excellent mechanical properties, i.e. , a yield strength of 458 MPa, and an ultimate tensile strength of 742 MPa with an elongation of 40%. Many nanometer precipitates (5–50 nm in size) and domains (5–10 nm in size) are found in the inter-dendrite and dendrite zones of the produced HEA, which is the key factor for its excellent mechanical properties. The enthalpy of mixing between Cu and Mn, Cr, Co, or Ni is higher than those of mixing between any two of Cr, Co, Ni and Mn, which leads to the separation of Cu from the CoCrCuMnNi HEA. Furthermore, we reveal the nanoscale-precipitate-phase-forming mechanism in the proposed HEA.
; ; ; ; ; ; ; ;
Award ID(s):
1809640 1611180
Publication Date:
Journal Name:
Page Range or eLocation-ID:
3965 to 3976
Sponsoring Org:
National Science Foundation
More Like this
  1. The empirical parameters of mixing enthalpy (ΔHmix), mixing entropy (ΔSmix), atomic radius difference (δ), valence electron concentration (VEC), etc., are used in this study to design a depleted uranium high-entropy alloy (HEA). X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to assess the phase composition. Compression and hardness tests were conducted to select alloy constituents with outstanding mechanical properties. Based on the experimental results, the empirical criteria of HEAs are an effective means to develop depleted uranium high-entropy alloys (DUHEAs). Finally, we created UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 HEAs with outstanding all-round characteristics. Both alloys weremore »composed of a single BCC structure. The hardness and strength of UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 were 305 HB and 1452 MPa, and 297 HB and 1157 MPa, respectively.« less
  2. The microstructure, Vickers hardness, and compressive properties of novel low-activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys (HEAs) were studied. The alloys were fabricated by vacuum-arc melting and the characteristics of these alloys were explored. The microstructures of all the alloys exhibited a typical morphology of dendritic and eutectic structures. The VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys are essentially single phase, consisting of a disordered body-centered-cubic (BCC) phase, whereas the VCrFeTa0.2W0.2 alloy contains fine, nanoscale precipitates distributed in the BCC matrix. The lattice parameters and compositions of the identified phases were investigated. The alloys have Vickers hardness valuesmore »ranging from 546 HV0.2 to 1135 HV0.2 with the x ranging from 0.1 to 1, respectively. The VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys exhibit compressive yield strengths of 1341 MPa and 1742 MPa, with compressive plastic strains of 42.2% and 35.7%, respectively. VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys have excellent hardness after annealing for 25 h at 600–1000 °C, and presented compressive yield strength exceeding 1000 MPa with excellent heat-softening resistance at 600–800 °C. By applying the HEA criteria, Ta and W additions into the VCrFeTaW are proposed as a family of candidate materials for fusion reactors and high-temperature structural applications.« less
  3. Owing to the reduced defects, low cost, and high efficiency, the additive manufacturing (AM) technique has attracted increasingly attention and has been applied in high-entropy alloys (HEAs) in recent years. It was found that AM-processed HEAs possess an optimized microstructure and improved mechanical properties. However, no report has been proposed to review the application of the AM method in preparing bulk HEAs. Hence, it is necessary to introduce AM-processed HEAs in terms of applications, microstructures, mechanical properties, and challenges to provide readers with fundamental understanding. Specifically, we reviewed (1) the application of AM methods in the fabrication of HEAs andmore »(2) the post-heat treatment effect on the microstructural evolution and mechanical properties. Compared with the casting counterparts, AM-HEAs were found to have a superior yield strength and ductility as a consequence of the fine microstructure formed during the rapid solidification in the fabrication process. The post-treatment, such as high isostatic pressing (HIP), can further enhance their properties by removing the existing fabrication defects and residual stress in the AM-HEAs. Furthermore, the mechanical properties can be tuned by either reducing the pre-heating temperature to hinder the phase partitioning or modifying the composition of the HEA to stabilize the solid-solution phase or ductile intermetallic phase in AM materials. Moreover, the processing parameters, fabrication orientation, and scanning method can be optimized to further improve the mechanical performance of the as-built-HEAs.« less
  4. High-entropy alloys (HEAs) prefer to form single-phase solid solutions (body-centered cubic (BCC), face-centered cubic (FCC), or hexagonal closed-packed (HCP)) due to their high mixing entropy. In this paper, we systematically review the mechanical behaviors and properties (such as oxidation and corrosion) of BCC-structured HEAs. The mechanical properties at room temperature and high temperatures of samples prepared by different processes (including vacuum arc-melting, powder sintering and additive manufacturing) are compared, and the effect of alloying on the mechanical properties is analyzed. In addition, the effects of HEA preparation and compositional regulation on corrosion resistance, and the application of high-throughput techniques inmore »the field of HEAs, are discussed. To conclude, alloy development for BCC-structured HEAs is summarized.« less
  5. A second-generation Ni-based superalloy has been directionally solidified by using a Bridgman method, and the key processing steps have been investigated with a focus on their effects on microstructure evolution and mechanical properties. The as-grown microstructure is of a typical dendrite structure with microscopic elemental segregation during solidification. Based on the microstructural evidence and the measured phase transformation temperatures, a step-wise solution treatment procedure is designed to effectively eliminate the compositional and microstructural inhomogeneities. Consequently, the homogenized microstructure consisting of γ/γ′ phases (size of γ′ cube is ~400 nm) have been successfully produced after a two-step (solid solution and aging)more »treatment. The mechanical properties of the resulting alloys with desirable microstructures at room and elevated temperatures are measured by tensile tests. The strength of the alloy is comparable to commercial monocrystalline superalloys, such as DD6 and CMSX-4. The fracture modes of the alloy at various temperatures have also been studied and the corresponding deformation mechanisms are discussed.« less