skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging Deep Learning and Generative AI for Predicting Rheological Properties and Material Compositions of 3D Printed Polyacrylamide Hydrogels
Artificial intelligence (AI) has the ability to predict rheological properties and constituent composition of 3D-printed materials with appropriately trained models. However, these models are not currently available for use. In this work, we trained deep learning (DL) models to (1) predict the rheological properties, such as the storage (G’) and loss (G”) moduli, of 3D-printed polyacrylamide (PAA) substrates, and (2) predict the composition of materials and associated 3D printing parameters for a desired pair of G’ and G”. We employed a multilayer perceptron (MLP) and successfully predicted G’ and G” from seven gel constituent parameters in a multivariate regression process. We used a grid-search algorithm along with 10-fold cross validation to tune the hyperparameters of the MLP, and found the R2 value to be 0.89. Next, we adopted two generative DL models named variational autoencoder (VAE) and conditional variational autoencoder (CVAE) to learn data patterns and generate constituent compositions. With these generative models, we produced synthetic data with the same statistical distribution as the real data of actual hydrogel fabrication, which was then validated using Student’s t-test and an autoencoder (AE) anomaly detector. We found that none of the seven generated gel constituents were significantly different from the real data. Our trained DL models were successful in mapping the input–output relationship for the 3D-printed hydrogel substrates, which can predict multiple variables from a handful of input variables and vice versa.  more » « less
Award ID(s):
2138459
PAR ID:
10572797
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Gels
Volume:
10
Issue:
10
ISSN:
2310-2861
Page Range / eLocation ID:
660
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since its selection as the method of the year in 2013, single-cell technologies have become mature enough to provide answers to complex research questions. With the growth of single-cell profiling technologies, there has also been a significant increase in data collected from single-cell profilings, resulting in computational challenges to process these massive and complicated datasets. To address these challenges, deep learning (DL) is positioned as a competitive alternative for single-cell analyses besides the traditional machine learning approaches. Here, we survey a total of 25 DL algorithms and their applicability for a specific step in the single cell RNA-seq processing pipeline. Specifically, we establish a unified mathematical representation of variational autoencoder, autoencoder, generative adversarial network and supervised DL models, compare the training strategies and loss functions for these models, and relate the loss functions of these models to specific objectives of the data processing step. Such a presentation will allow readers to choose suitable algorithms for their particular objective at each step in the pipeline. We envision that this survey will serve as an important information portal for learning the application of DL for scRNA-seq analysis and inspire innovative uses of DL to address a broader range of new challenges in emerging multi-omics and spatial single-cell sequencing. 
    more » « less
  2. Abstract Anthropogenic pressures on biodiversity necessitate efficient and highly scalable methods to predict global species distributions. Current species distribution models (SDMs) face limitations with large-scale datasets, complex interspecies interactions, and data quality. Here, we introduce EcoVAE, a framework of autoencoder-based generative models trained separately on nearly 124 million georeferenced occurrences from taxa including plants, butterflies and mammals, to predict their global distributions at both genus and species levels. EcoVAE achieves high precision and speed, captures underlying distribution patterns through unsupervised learning, and reveals interspecies interactions viain silicoperturbation analyses. Additionally, it evaluates global sampling efforts and interpolates distributions without relying on environmental variables, offering new applications for biodiversity exploration and monitoring. 
    more » « less
  3. Abstract BackgroundAlzheimer’s Disease (AD) is a widespread neurodegenerative disease with Mild Cognitive Impairment (MCI) acting as an interim phase between normal cognitive state and AD. The irreversible nature of AD and the difficulty in early prediction present significant challenges for patients, caregivers, and the healthcare sector. Deep learning (DL) methods such as Recurrent Neural Networks (RNN) have been utilized to analyze Electronic Health Records (EHR) to model disease progression and predict diagnosis. However, these models do not address some inherent irregularities in EHR data such as irregular time intervals between clinical visits. Furthermore, most DL models are not interpretable. To address these issues, we developed a novel DL architecture called Time‐Aware RNN (TA‐RNN) to predict MCI to AD conversion at the next clinical visit. MethodTA‐RNN comprises of a time embedding layer, attention‐based RNN, and prediction layer based on multi‐layer perceptron (MLP) (Figure 1). For interpretability, a dual‐level attention mechanism within the RNN identifies significant visits and features impacting predictions. TA‐RNN addresses irregular time intervals by incorporating time embedding into longitudinal cognitive and neuroimaging data based on attention weights to create a patient embedding. The MLP, trained on demographic data and the patient embedding predicts AD conversion. TA‐RNN was evaluated on Alzheimer’s Disease Neuroimaging Initiative (ADNI) and National Alzheimer’s Coordinating Center (NACC) datasets based on F2 score and sensitivity. ResultMultiple TA‐RNN models were trained with two, three, five, or six visits to predict the diagnosis at the next visit. In one setup, the models were trained and tested on ADNI. In another setup, the models were trained on the entire ADNI dataset and evaluated on the entire NACC dataset. The results indicated superior performance of TA‐RNN compared to state‐of‐the‐art (SOTA) and baseline approaches for both setups (Figure 2A and 2B). Based on attention weights, we also highlighted significant visits (Figure 3A) and features (Figure 3B) and observed that CDRSB and FAQ features and the most recent visit had highest influence in predictions. ConclusionWe propose TA‐RNN, an interpretable model to predict MCI to AD conversion while handling irregular time intervals. TA‐RNN outperformed SOTA and baseline methods in multiple experiments. 
    more » « less
  4. Abstract 3D bioprinting improves orientation ofin vitrotumor models by offering layer by layer positioning of cancer cells and cancer associated fibroblasts (CAFs) which can replicate tumor microenvironment. Aim of this study was to develop a sodium alginate -gelatin (SA-GL) hydrogel by optimizing rheological parameters to print non-small cell lung cancer (NSCLC) patient derived xenograft (PDX) cells and lung CAFs co-cultures. SA-GL hydrogels were prepared, and rheological properties were evaluated. Both the cells were mixed with the hydrogel and printed using INKREDIBLE bioprinter. Hydrogels prepared with 3.25% and 3.5% (w/v) SA and 4% (w/v) GL showed higher printability and cell viability. A significant decline in viscosity with shear rate was observed in these hydrogels suggesting the shear thinning property of hydrogels. Spheroid size distribution after 15 days was in the diameter range of 50–1100 µm. Up-regulation of vimentin, α-SMA and loss of E-cadherin in co-culture spheroids confirmed cellular crosstalk. This study demonstrates that rheological optimization of SA-GL hydrogel enhances printability and viability of NSCLC PDX and CAF co-culture which allows 3D co-culture spheroid formation within the printed scaffold. Therefore, this model can be used for studying high throughput drug screening and other pre-clinical applications. 
    more » « less
  5. Abstract In this paper, we present a predictive and generative design approach for supporting the conceptual design of product shapes in 3D meshes. We develop a target-embedding variational autoencoder (TEVAE) neural network architecture, which consists of two modules: (1) a training module with two encoders and one decoder (E2D network) and (2) an application module performing the generative design of new 3D shapes and the prediction of a 3D shape from its silhouette. We demonstrate the utility and effectiveness of the proposed approach in the design of 3D car body and mugs. The results show that our approach can generate a large number of novel 3D shapes and successfully predict a 3D shape based on a single silhouette sketch. The resulting 3D shapes are watertight polygon meshes with high-quality surface details, which have better visualization than voxels and point clouds, and are ready for downstream engineering evaluation (e.g., drag coefficient) and prototyping (e.g., 3D printing). 
    more » « less