skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Adversarially Robust Multi-task Representation Learning
We study adversarially robust transfer learning, wherein, given labeled data on multiple (source) tasks, the goal is to train a model with small robust error on a previously unseen (target) task. In particular, we consider a multi-task representation learning (MTRL) setting, i.e., we assume that the source and target tasks admit a simple (linear) predictor on top of a shared representation (e.g., the final hidden layer of a deep neural network). In this general setting, we provide rates on the excess adversarial (transfer) risk for Lipschitz losses and smooth nonnegative losses. These rates show that learning a representation using adversarial training on diverse tasks helps protect against inference-time attacks in data-scarce environments. Additionally, we provide novel rates for the single-task setting.  more » « less
Award ID(s):
1943251
PAR ID:
10572983
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
38th Conference on Neural Information Processing Systems (NeurIPS 2024)
Date Published:
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Li, Y; Mandt, S; Agrawal, S; Khan, E (Ed.)
    We study the problem of representational transfer in offline Reinforcement Learning (RL), where a learner has access to episodic data from a number of source tasks collected a priori, and aims to learn a shared representation to be used in finding a good policy for a target task. Unlike in online RL where the agent interacts with the environment while learning a policy, in the offline setting there cannot be such interactions in either the source tasks or the target task; thus multi-task offline RL can suffer from incomplete coverage. We propose an algorithm to compute pointwise uncertainty measures for the learnt representation in low-rank MDPs, and establish a data-dependent upper bound for the suboptimality of the learnt policy for the target task. Our algorithm leverages the collective exploration done by source tasks to mitigate poor coverage at some points by a few tasks, thus overcoming the limitation of needing uniformly good coverage for a meaningful transfer by existing offline algorithms. We complement our theoretical results with empirical evaluation on a rich-observation MDP which requires many samples for complete coverage. Our findings illustrate the benefits of penalizing and quantifying the uncertainty in the learnt representation. 
    more » « less
  2. null (Ed.)
    We study the transfer learning process between two linear regression problems. An important and timely special case is when the regressors are overparameterized and perfectly interpolate their training data. We examine a parameter transfer mechanism whereby a subset of the parameters of the target task solution are constrained to the values learned for a related source task. We analytically characterize the generalization error of the target task in terms of the salient factors in the transfer learning architecture, i.e., the number of examples available, the number of (free) parameters in each of the tasks, the number of parameters transferred from the source to target task, and the correlation between the two tasks. Our non-asymptotic analysis shows that the generalization error of the target task follows a two-dimensional double descent trend (with respect to the number of free parameters in each of the tasks) that is controlled by the transfer learning factors. Our analysis points to specific cases where the transfer of parameters is beneficial. Specifically, we show that transferring a specific set of parameters that generalizes well on the respective part of the source task can soften the demand on the task correlation level that is required for successful transfer learning. Moreover, we show that the usefulness of a transfer learning setting is fragile and depends on a delicate interplay among the set of transferred parameters, the relation between the tasks, and the true solution. 
    more » « less
  3. In this work, we consider a setting where the goal is to achieve adversarial robustness on a target task, given only unlabeled training data from the task distribution, by leveraging a labeled training data from a different yet related source task distribution. The absence of the labels on training data for the target task poses a unique challenge as conventional adversarial robustness defenses cannot be directly applied. To address this challenge, we first bound the adversarial population 0-1 robust loss on the target task in terms of (i) empirical 0-1 loss on the source task, (ii) joint loss on source and target tasks of an ideal classifier, and (iii) a measure of worst-case domain divergence. Motivated by this bound, we develop a novel unified defense framework called Divergence-Aware adveRsarial Training (DART), which can be used in conjunction with a variety of standard UDA methods; e.g., DANN. DART is applicable to general threat models, including the popular \ell_p-norm model, and does not require heuristic regularizers or architectural changes. We also release DomainRobust, a testbed for evaluating robustness of UDA models to adversarial attacks. DomainRobust consists of 4 multidomain benchmark datasets (with 46 source-target pairs) and 7 meta-algorithms with a total of 11 variants. Our large-scale experiments demonstrate that, on average, DART significantly enhances model robustness on all benchmarks compared to the state of the art, while maintaining competitive standard accuracy. The relative improvement in robustness from DART reaches up to 29.2% on the source-target domain pairs considered. 
    more » « less
  4. null (Ed.)
    Given its demonstrated ability in analyzing and revealing patterns underlying data, Deep Learning (DL) has been increasingly investigated to complement physics-based models in various aspects of smart manufacturing, such as machine condition monitoring and fault diagnosis, complex manufacturing process modeling, and quality inspection. However, successful implementation of DL techniques relies greatly on the amount, variety, and veracity of data for robust network training. Also, the distributions of data used for network training and application should be identical to avoid the internal covariance shift problem that reduces the network performance applicability. As a promising solution to address these challenges, Transfer Learning (TL) enables DL networks trained on a source domain and task to be applied to a separate target domain and task. This paper presents a domain adversarial TL approach, based upon the concepts of generative adversarial networks. In this method, the optimizer seeks to minimize the loss (i.e., regression or classification accuracy) across the labeled training examples from the source domain while maximizing the loss of the domain classifier across the source and target data sets (i.e., maximizing the similarity of source and target features). The developed domain adversarial TL method has been implemented on a 1-D CNN backbone network and evaluated for prediction of tool wear propagation, using NASA's milling dataset. Performance has been compared to other TL techniques, and the results indicate that domain adversarial TL can successfully allow DL models trained on certain scenarios to be applied to new target tasks. 
    more » « less
  5. Abstract Transfer learning refers to the process of adapting a model trained on a source task to a target task. While kernel methods are conceptually and computationally simple models that are competitive on a variety of tasks, it has been unclear how to develop scalable kernel-based transfer learning methods across general source and target tasks with possibly differing label dimensions. In this work, we propose a transfer learning framework for kernel methods by projecting and translating the source model to the target task. We demonstrate the effectiveness of our framework in applications to image classification and virtual drug screening. For both applications, we identify simple scaling laws that characterize the performance of transfer-learned kernels as a function of the number of target examples. We explain this phenomenon in a simplified linear setting, where we are able to derive the exact scaling laws. 
    more » « less