Abstract Linking quickflow response to subsurface state can improve our understanding of runoff processes that drive emergent catchment behaviour. We investigated the formation of non‐linear quickflows in three forested headwater catchments and also explored unsaturated and saturated storage dynamics, and likely runoff generation mechanisms that contributed to threshold formation. Our analyses focused on two reference watersheds at the Coweeta Hydrologic Laboratory (CHL) in western North Carolina, USA, and one reference watershed at the Susquehanna Shale Hills Critical Zone Observatory (SHW) in Central Pennsylvania, USA, with available hourly soil moisture, groundwater, streamflow, and precipitation time series over several years. Our study objectives were to characterise (a) non‐linear runoff response as a function of storm characteristics and antecedent conditions, (b) the critical levels of shallow unsaturated and saturated storage that lead to hourly flow response, and (c) runoff mechanisms contributing to rapidly increasing quickflow using measurements of soil moisture and groundwater. We found that maximum hourly rainfall did not significantly contribute to quickflow production in our sites, in contrast to prior studies, due to highly conductive forest soils. Soil moisture and groundwater dynamics measured in hydrologically representative areas of the hillslope showed that variable subsurface states could contribute to non‐linear runoff behaviour. Quickflow generation in watersheds at CHL were dominated by both saturated and unsaturated pathways, but the relative contributions of each pathway varied between catchments. In contrast, quickflow was almost entirely related to groundwater fluctuations at SHW. We showed that co‐located measurements of soil moisture and groundwater supplement threshold analyses providing stronger prediction and understanding of quickflow generation and indicate dominant runoff processes. 
                        more » 
                        « less   
                    This content will become publicly available on January 8, 2026
                            
                            Soil Texture‐Based Parameterisation and Hydrological Insights of a Fully Coupled Surface and Subsurface Model at the Hubbard Brook Experimental Forest, USA
                        
                    
    
            ABSTRACT Parameterisation of fully coupled integrated hydrological models is challenging. The state‐of‐the‐art hydrogeology models rely on solutions of coupled surface and subsurface partial differential equations. Calibration of these models with traditional optimisation methods are not yet viable due to the high computational costs. Prior knowledge of the range of the parameters can be helpful as a starting point, however, due to natural variations, abstractions and conceptualizations used in modelling, a systematic exploration of the variable space is needed. In this study, we utilise the natural clustering of the soils based on their saturated and unsaturated hydraulic behaviour derived from soil texture maps in conjunction with two level Latin hypercube sampling to effectively explore model parameter spaces. Soil texture maps are similar to USDA soil classifications; however, the objective is to classify the soil based on their unsaturated behaviour, rather than soil texture. The method has never been utilised in the modelling and the results show that it can be applied to larger watersheds. The area of study is Hubbard Brook Experimental Forest, a northern hardwood forest in the White Mountains of New Hampshire, USA. An average Nash–Sutcliffe value of 0.80 is achieved for hourly discharge for the eight streams in the catchment. The Nash–Sutcliffe measure shows a 7% improvement with the addition of the snow melt and evapotranspiration parameters in the second stage. Exchange flux patterns vary seasonally in the catchment with largest infiltration occurring in spring. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10573234
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Hydrological Processes
- Volume:
- 39
- Issue:
- 1
- ISSN:
- 0885-6087
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Woody encroachment is a widespread phenomenon in grassland ecosystems, driven by overgrazing, fire suppression, nitrogen deposition and climate change, among other environmental changes. The influence of woody encroachment on processes such as chemical weathering however is poorly understood. In particular, for fast reactions such as carbonate weathering, root traits associated with woody encroachment (e.g., coarser, deeper, and longer residence times) can potentially change fluxes of inorganic carbon into streams and back to the atmosphere, providing CO2-climate feedbacks. Here we examine the influence of deepening roots arising from woody encroachment on catchment water balance and carbonate weathering rates at Konza a tallgrass prairie within a carbonate terrain where woody encroachment is suspected to drive the groundwater alkalinity upwards. We use a watershed reactive transport model BioRT-Flux-PIHM to understand the ramifications of deepening roots. Stream discharge and evapotranspiration (ET) measurements were used to calibrate the hydrology model. The subsurface CO2 concentration, water quality data for groundwater, stream, soil water and precipitation were used to constrain the soil respiration and carbonate dissolution reaction rates. The hydrology model has a Nash-Sutcliffe Efficiency value of 0.88. Modelling results from numerical experiments indicate that woody encroachment results in overall lower stream flow due to higher ET, yet the groundwater recharge is higher due to deep macropore development from deepening roots. The deeper macropores enhance carbonate weathering rate as more acidic, CO2-rich water recharges the deeper calcite bedrock. Accounting for the change in inorganic carbon fluxes caused by such land use changes gives a better estimate of carbon fluxes in the biosphere. Such knowledge is essential for effective planning of climate change mitigation strategies.more » « less
- 
            Abstract. Dryland regions are characterised by water scarcity and are facingmajor challenges under climate change. One difficulty is anticipating howrainfall will be partitioned into evaporative losses, groundwater, soilmoisture, and runoff (the water balance) in the future, which has importantimplications for water resources and dryland ecosystems. However, in orderto effectively estimate the water balance, hydrological models in drylandsneed to capture the key processes at the appropriate spatio-temporal scales.These include spatially restricted and temporally brief rainfall, highevaporation rates, transmission losses, and focused groundwater recharge.Lack of available input and evaluation data and the high computational costsof explicit representation of ephemeral surface–groundwater interactionsrestrict the usefulness of most hydrological models in these environments.Therefore, here we have developed a parsimonious distributed hydrologicalmodel for DRYland Partitioning (DRYP). The DRYP model incorporates the keyprocesses of water partitioning in dryland regions with limited datarequirements, and we tested it in the data-rich Walnut Gulch ExperimentalWatershed against measurements of streamflow, soil moisture, andevapotranspiration. Overall, DRYP showed skill in quantifying the maincomponents of the dryland water balance including monthly observations ofstreamflow (Nash–Sutcliffe efficiency, NSE, ∼ 0.7),evapotranspiration (NSE > 0.6), and soil moisture (NSE ∼ 0.7). The model showed that evapotranspiration consumes > 90 % of the total precipitation input to the catchment andthat < 1 % leaves the catchment as streamflow. Greater than 90 % of the overland flow generated in the catchment is lost throughephemeral channels as transmission losses. However, only ∼ 35 % of the total transmission losses percolate to the groundwater aquiferas focused groundwater recharge, whereas the rest is lost to the atmosphereas riparian evapotranspiration. Overall, DRYP is a modular, versatile, andparsimonious Python-based model which can be used to anticipate and plan forclimatic and anthropogenic changes to water fluxes and storage in drylandregions.more » « less
- 
            Abstract Forest canopy water use and carbon cycling traits (WCT) can vary substantially and in spatially organized patterns, with significant impacts on watershed ecohydrology. In many watersheds, WCT may vary systematically along and between hydrologic flowpaths as an adaptation to available soil water, nutrients, and microclimate‐mediated atmospheric water demand. We hypothesize that the emerging patterns of WCT at the hillslope to catchment scale provide a more resistant ecohydrological system, particularly with respect to drought stress, and the maintenance of high levels of productivity. Rather than attempting to address this hypothesis with species‐specific patterns, we outline broader functional WCT groups and explore the sensitivity of water and carbon balances to the representation of canopy WCT functional organization through a modelling approach. We use a well‐studied experimental watershed in North Carolina where detailed mapping of forest community patterns are sufficient to describe WCT functional organization. Ecohydrological models typically use broad‐scale characterizations of forest canopy composition based on remotely sensed information (e.g., evergreen vs. deciduous), which may not adequately represent the range or spatial pattern of functional group WCT at hillslope to watershed scales. We use three different representations of WCT functional organizations: (1) restricting WCT to deciduous/conifer differentiation, (2) utilizing more detailed, but aspatial, information on local forest community composition, and (3) spatially distributed representation of local forest WCT. Accounting for WCT functional organization information improves model performance not only in terms of capturing observed flow regimes (especially watershed‐scale seasonal flow dynamics) but also in terms of representing more detailed canopy ecohydrologic behaviour (e.g., root zone soil moisture, evapotranspiration, and net canopy photosynthesis), especially under dry condition. Results suggest that the well‐known zonation of forest communities over hydrologic gradients is not just a local adaptation but also provides a property that regulates hillslope to catchment‐scale behaviour of water use and drought resistance.more » « less
- 
            Abstract This study integrated spatially distributed field observations and soil thermal models to constrain the impact of frozen ground on snowmelt partitioning and streamflow generation in an alpine catchment within the Niwot Ridge Long‐Term Ecological Research site, Colorado, USA. The study area was comprised of two contrasting hillslopes with notable differences in topography, snow depth and plant community composition. Time‐lapse electrical resistivity surveys and soil thermal models enabled extension of discrete soil moisture and temperature measurements to incorporate landscape variability at scales and depths not possible with point measurements alone. Specifically, heterogenous snowpack thickness (~0–4 m) and soil volumetric water content between hillslopes (~0.1–0.45) strongly influenced the depths of seasonal frost, and the antecedent soil moisture available to form pore ice prior to freezing. Variable frost depths and antecedent soil moisture conditions were expected to create a patchwork of differing snowmelt infiltration rates and flowpaths. However, spikes in soil temperature and volumetric water content, as well as decreases in subsurface electrical resistivity revealed snowmelt infiltration across both hillslopes that coincided with initial decreases in snow water equivalent and early increases in streamflow. Soil temperature, soil moisture and electrical resistivity data from both wet and dry hillslopes showed that initial increases in streamflow occurred prior to deep soil water flux. Temporal lags between snowmelt infiltration and deeper percolation suggested that the lateral movement of water through the unsaturated zone was an important driver of early streamflow generation. These findings provide the type of process‐based information needed to bridge gaps in scale and populate physically based cryohydrologic models to investigate subsurface hydrology and biogeochemical transport in soils that freeze seasonally.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
