Functionally graded adhesive bondlines are currently being researched to relax stress concentrations at the re-entrant corner of bonded joints and improve the strength of joints. Bi-adhesive joints have been under development for some time, but lately adhesives with continuous gradation have been shown to theoretically enable more stress reductions and greater strength benefits. Several researchers have shown the potential to create a working adhesive gradation system with very promising results, but adhesive stability over long periods of time has proven difficult to realize. Nearly as important as adhesive development are analysis methods for functionally graded adhesive joints, since the gradation must be designed to yield beneficial results. Therefore, this work addresses the potential gains provided by design of functionally graded adhesive joints driven by finite element analysis. A parametric study on a strap joint with homogenous adhesive is conducted to highlight parameters which influence the global strength of an adhesively bonded joint. A statistical approach is used to identify significant correlations between strength and adhesive material parameters. Results from the statistical study are applied to drive strategies to create joints with optimized gradation and validated by failure analysis within the finite element model. A strap joint is analyzed as example of the potential gain of functionally graded joints.
more »
« less
Using cohesive zone models with digital image correlation to obtain a mixed mode I/II fracture envelope of a tough epoxy
This work describes a method in which the digital image correlation (DIC) method and finite element analysis (FEA) were used to create a quasi-static mixed-mode fracture envelope for bonded joints consisting of 2024-T3 Al adherends and a tough structural epoxy adhesive. Symmetric and asymmetric versions of double cantilever beam, single-leg bend, and end-notched flexure tests are used to populate the mixed-mode fracture envelope with results at several mode mixities. Experiments are conducted in a universal testing machine while recording images for subsequent DIC analysis. Finite element analysis is used to implement cohesive zone models (CZMs) of the adhesive fracture and to account for plastic deformation of adherends. Mode I and mode II traction separation laws (TSLs) are determined from a property identification method with a Benzeggagh–Kenane mixed-mode coupling law used to model mixed-mode behavior. FEA results are shown to provide a good agreement to both the crosshead displacement and DIC data. The methods in this paper serve as a potential framework for future calibration of mixed-mode fracture envelopes for joints bonded with very tough adhesives that complicate assessment with traditional data analysis methods.
more »
« less
- Award ID(s):
- 1854185
- PAR ID:
- 10573789
- Publisher / Repository:
- El Sevier
- Date Published:
- Journal Name:
- Engineering Fracture Mechanics
- Volume:
- 295
- Issue:
- C
- ISSN:
- 0013-7944
- Page Range / eLocation ID:
- 109732
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Carbon and glass fiber-reinforced plastic (CFRP and GFRP) composites have gained popularity in various industries and settings owing to their exceptional strength-to-weight ratio, corrosion resistance, fatigue resistance, and design flexibility. Adhesives are commonly utilized to bond carbon fiber reinforced plastics to other materials or to themselves. Bonded joints have been found to enhance the mechanical characteristics of materials, while also reducing additional costs for practical applications. The bonding region’s strength can be influenced by different material combinations and substrate thicknesses. The present investigation employed a double-sided multi-digital image correlation (DS-Multi-DIC) system to quantify the deformation and fracture mechanisms of adherends during tensile testing. The primary objective was to assess the static impact on the strength of the bonded zone under tensile loading. The system comprises of two stereo vision DIC measurement systems, wherein each system comprises of two GigE cameras. These cameras are positioned at the front and back of the sample, respectively the process of system calibration involves the utilization of the double-sided calibration technique to integrate the coordinate systems of the two DIC measurement subsystems with the global coordinate system. This enables the direct measurement of deformation and strain in three dimensions. This paper examines the impact of adhesive thickness and type on the strength of the bonded area and fracture mechanism by analyzing the alteration in strain distribution and maximum strain during static stretching. The study yielded a conclusion that the magnitude of the bonded region’s strength is positively correlated with the thickness of the bonding material. The cohesive force of the bonded region is positively correlated with the malleability of the adhesive bond. Furthermore, an examination was conducted on the impact of adhesive thickness and type on peeling strain. As the bond’s bending stiffness diminishes, there is a corresponding increase in the peel strain it undergoes. Furthermore, a succinct description is provided regarding the unequal allocation of auditory alterations that occur during stationary stretching.more » « less
-
Abstract Adhesive bonding of composite materials has become increasingly crucial for advanced engineering applications, offering unique advantages for lightweight and high-performance designs. This study presents a novel framework, physics-informed failure mode proportion prediction (PIFMP) model, for predicting failure mode proportions in composite adhesive joints, addressing critical gaps in understanding mixed-mode failure behaviors. In contrast to conventional approaches that focus solely on force or stress prediction, this research integrates important parameters from multistage manufacturing processes (MMPs) and simulation data into a physics-informed machine learning (PIML) framework, enabling proactive failure prediction and design optimization. The proposed framework unifies data-driven machine learning models with features derived from finite element analysis (FEA), incorporating cohesive zone modeling (CZM) to capture the physical dynamics of adhesive behavior under lap shearing. By embedding FEA-based physics features into the machine learning process and leveraging a time-series transformer model to analyze the temporal progression of interfacial damage and separation, the framework ensures predictive accuracy and physics-informed consistency, enabling precise analysis of failure mechanisms. The empirical study validates the effectiveness and the reliability of the framework, demonstrating enhanced predictive performance through cross-validation. The work establishes a foundational approach for failure analysis and provides a robust basis for future advancements.more » « less
-
Previous studies have provided evidence that reinforcement of epoxy adhesives with nanostructures such as carbon nanofibers (CNFs) produces higher strength bonded joints between carbon fiber reinforced polymer (CFRP) laminates and shifts bond-line failure modes from the adhesive into the laminate. Despite this, there has been no research dedicated to applying reinforced adhesives to the bonding of nano-reinforced CFRP such as CNF z-threaded carbon fiber reinforced polymer (ZT-CFRP) laminates, which have been proven to exhibit increased interlaminar shear strength, mode-I delamination toughness, and compressive strength over traditional CFRP. This study examined the effectiveness of using CNF reinforced epoxy adhesives for unidirectional ZT-CFRP laminate bonding through single-lap shear tests using the ASTM D5868-01 standard. Unidirectional CFRP laminate samples bonded with both epoxy adhesive and CNF reinforced epoxy adhesive were also tested for comparison. It was found that the average shear strength observed for ZT-CFRP samples bonded with CNF reinforced epoxy adhesive was approximately 44% and 26 % higher than that of CFRP samples bonded with epoxy adhesive and CNF reinforced epoxy adhesive, respectively. Microscopic image analysis was performed to examine the mode of bond failure. The roles of nanomaterials in the fracture mechanism of the adhesives and the composite laminates are also discussed.more » « less
-
Abstract The demand for effective de-bondable adhesive technology enabling substrate separation under small loads has grown in recent years. Thermally Expandable Particles (TEP) can be embedded in structural adhesives to promote mechanical separation of the adherends. However, the activation of TEP additives in joints with non-metallic adherends is challenging and can result in substrate thermal damage and poor de-bonding performance, due to the low thermal conductivity and dielectric loss factor typical of plastics and polymer-matrix composites. In this study, the effect of bondline stainless steel inserts on fully composite (Carbon Fiber Reinforced Polymer, or CFRP) bonded Single Lap Joints (SLJ) mechanical and de-bonding performance is evaluated. A centrifugal mixer is used to disperse the TEP in the adhesive. TEP additives are activated using induction heating of the bondline insert, which also helps control crack initiation and propagation. SLJ de-bonding tests are run under a constant 20 lb (89 N) load, and substrate temperature is recorded with thermocouples and an infrared thermometer. Joint strength is evaluated with quasi-static lap shear tests on a servo-hydraulic tensile test apparatus. Preliminary de-bonding testing is performed on a broad initial set of 316 stainless steel insert designs. Out of those, the four best-performing insert geometries are chosen for the complete study. Two TEP enrichment levels (10% and 20% wt.) are investigated. The mechanical and de-bonding performance of SLJs with steel inserts is compared to TEP-only baseline fully-composite and multi-material (AA 6061 Aluminum Alloy + CFRP) joints. The results show that bondline inserts enable fast de-bonding of fully-composite SLJs. Insert geometry and thickness affect joint de-bonding time and reliability, and can be optimized to allow for a partial recovery of lap shear strength. 100% de-bonding reliability is achieved with “block”-type inserts, with de-bonding performance similar to TEP-enriched metallic joints. Visual inspection of the fracture surfaces shows the relationship between TEP activation and crack propagation path. Discussion and conclusions are provided.more » « less
An official website of the United States government

