skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sharp asymptotic estimates for expectations, probabilities, and mean first passage times in stochastic systems with small noise
Freidlin‐Wentzell theory of large deviations can be used to compute the likelihood of extreme or rare events in stochastic dynamical systems via the solution of an optimization problem. The approach gives exponential estimates that often need to be refined via calculation of a prefactor. Here it is shown how to perform these computations in practice. Specifically, sharp asymptotic estimates are derived for expectations, probabilities, and mean first passage times in a form that is geared towards numerical purposes: they require solving well‐posed matrix Riccati equations involving the minimizer of the Freidlin‐Wentzell action as input, either forward or backward in time with appropriate initial or final conditions tailored to the estimate at hand. The usefulness of our approach is illustrated on several examples. In particular, invariant measure probabilities and mean first passage times are calculated in models involving stochastic partial differential equations of reaction‐advection‐diffusion type.  more » « less
Award ID(s):
2012548
PAR ID:
10574050
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Communications on Pure and Applied Mathematics
Volume:
77
Issue:
4
ISSN:
0010-3640
Page Range / eLocation ID:
2268 to 2330
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the variational problem associated with the Freidlin–Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation (SHE). For a general class of initial-terminal conditions, we show that a minimizer of this variational problem exists, and any minimizer solves a system of imaginary-time Nonlinear Schrödinger equations. This system is integrable. Utilizing the integrability, we prove that the formulas from the physics work (see Alexandre Krajenbrink and Pierre Le Doussal [Phys. Rev. Lett. 127 (2021), p. 8]) hold for every minimizer of the variational problem. As an application, we consider the Freidlin–Wentzell LDP for the SHE with the delta initial condition. Under a technical assumption on the poles of the reflection coefficients, we prove the explicit expression for the one-point rate function that was predicted in the physics works (see Pierre Le Doussal, Satya N. Majumdar, Alberto Rosso, and Grégory Schehr [Phys. Rev. Lett. 117 (2016), p. 070403]; Alexandre Krajenbrink and Pierre Le Doussal [Phys. Rev. Lett. 127 (2021), p. 8]). Under the same assumption, we give detailed pointwise estimates of the most probable shape in the upper-tail limit. 
    more » « less
  2. We establish the Freidlin–Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation with multiplicative noise in one spatial dimension. That is, we introduce a small parameter ε√ to the noise, and establish an LDP for the trajectory of the solution. Such a Freidlin–Wentzell LDP gives the short-time, one-point LDP for the KPZ equation in terms of a variational problem. Analyzing this variational problem under the narrow wedge initial data, we prove a quadratic law for the near-center tail and a 52 law for the deep lower tail. These power laws confirm existing physics predictions (Kolokolov and Korshunov in Phys Rev B 75(14):140201, 2007, Phys Rev E 80(3):031107, 2009; Meerson et al. in Phys Rev Lett 116(7):070601, 2016; Le Doussal et al. in Phys Rev Lett 117(7):070403, 2016; Kamenev et al. in Phys Rev E 94(3):032108, 2016). 
    more » « less
  3. Single-molecule and single-particle tracking experiments are typically unable to resolve fine details of thermal motion at short timescales where trajectories are continuous. We show that, when a diffusive trajectory [Formula: see text] is sampled at finite time intervals δt, the resulting error in measuring the first passage time to a given domain can exceed the time resolution of the measurement by more than an order of magnitude. Such surprisingly large errors originate from the fact that the trajectory may enter and exit the domain while being unobserved, thereby lengthening the apparent first passage time by an amount that is larger than δt. Such systematic errors are particularly important in single-molecule studies of barrier crossing dynamics. We show that the correct first passage times, as well as other properties of the trajectories such as splitting probabilities, can be recovered via a stochastic algorithm that reintroduces unobserved first passage events probabilistically. 
    more » « less
  4. Rate-induced tipping occurs when a ramp parameter changes rapidly enough to cause the system to tip between co-existing, attracting states. We show that the addition of noise to the system can cause it to tip well below the critical rate at which rate-induced tipping would occur. Moreover, it does so with significantly increased probability over the noise acting alone. We achieve this by finding a global minimizer in a canonical problem of the Freidlin–Wentzell action functional of large deviation theory that represents the most probable path for tipping. This is realized as a heteroclinic connection for the Euler–Lagrange system associated with the Freidlin–Wentzell action and we find it exists for all rates less than or equal to the critical rate. Its role as the most probable path is corroborated by direct Monte Carlo simulations. 
    more » « less
  5. Understanding mechanisms of bacterial eradication is critically important for overcoming failures of antibiotic treatments. Current studies suggest that the clearance of large bacterial populations proceeds deterministically, while for smaller populations, the stochastic effects become more relevant. Here, we develop a theoretical approach to investigate the bacterial population dynamics under the effect of antibiotic drugs using a method of first-passage processes. It allows us to explicitly evaluate the most important characteristics of bacterial clearance dynamics such as extinction probabilities and extinction times. The new meaning of minimal inhibitory concentrations for stochastic clearance of bacterial populations is also discussed. In addition,we investigate the effect of fluctuations in population growth rates on the dynamics of bacterial eradication. It is found that extinction probabilities and extinction times generally do not correlate with each other when random fluctuations in the growth rates are taking place. Unexpectedly, for a significant range of parameters, the extinction times increase due to these fluctuations, indicating a slowing in the bacterial clearance dynamics. It is argued that this might be one of the initial steps in the pathway for the development of antibiotic resistance. Furthermore, it is suggested that extinction times is a convenient measure of bacterial tolerance. 
    more » « less