Abstract Rising anthropogenic carbon emissions have dire environmental consequences, necessitating remediative approaches, which includes use of solid sorbents. Here, aminopolymers (poly(ethylene imine) (PEI) and poly(propylene imine) (PPI)) are supported within solid mesoporous MIL‐101(Cr) to examine effects of support defect density on aminopolymer‐MOF interactions for CO2uptake and stability during uptake‐regeneration cycles. Using simulated flue gas (10 % CO2in He), MIL‐101(Cr)‐ρhigh(higher defect density) shows 33 % higher uptake capacity per gram adsorbent than MIL‐101(Cr)‐ρlow(lower defect density) at 308 K, consistent with increased availability of undercoordinated Cr adsorption sites at missing linker defects. Increasing aminopolymer weight loadings (10–50 wt.%) within MIL‐101(Cr)‐ρlowand MIL‐101(Cr)‐ρhighincreases amine efficiencies and CO2uptake capacities relative to bare MOFs, though both incur CO2diffusion limitations through confined, viscous polymer phases at higher (40–50 wt.%) loadings. Benchmarked against SBA‐15, lower polymer packing densities (PPI>PEI), weaker and less abundant van der Waals interactions between aminopolymers and pore walls, and open framework topology increase amine efficiencies. Interactions between amines and Cr defect sites incur amine efficiency losses but grant higher thermal and oxidative stability during uptake‐regeneration cycling. Finally, >25 % higher CO2uptake capacities are achieved for aminopolymer/MIL‐101(Cr)‐ρhighunder humid conditions, demonstrating promise for realistic applications. 
                        more » 
                        « less   
                    
                            
                            Synergistic Enhancement of CO2 Capture via Amine Decorated Hierarchical MIL-101 (Cr)/SBA-15 Composites
                        
                    
    
            Synthesis of amine incorporated hierarchical metal organic framework (MOF) MIL-101(Cr)/SBA-15, meso/ micro-porous composites, with tailored properties for CO 2 capture is reported. The synthesized composites were characterized in terms of their crystallinity, morphology, functional groups, and textural properties. Isothermal adsorption of CO 2 from concentrated sites as well as ambient conditions were evaluated by gravimetric and volumetric measurements. The optimized composite i.e., MIL-101(Cr)/SBA-15/PEI-25 showed improved pseudo- equilibrium adsorption capacity of 3.2 mmol/g at 303 K and 1 bar, compared to nascent SBA-15 (0.8 mmol/g) and the MOF, i.e., MIL-101(Cr) (1.3 mmol/g). Such adsorption performance can be attributed to the basic sites of the impregnated polyethyleneimine (PEI), unsaturated Cr(III) metal sites, and the hierarchical pore structure of the composite which imparts chemical as well physical adsorption forces towards CO 2 lower amine loading of 25 wt% in the composite resulted in facile CO 2 uptake. Interestingly, desorption at much lower temperature of 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1736173
- PAR ID:
- 10574057
- Publisher / Repository:
- Elsevier B.V.
- Date Published:
- Journal Name:
- System
- Volume:
- 322
- Issue:
- August 2024
- ISSN:
- 0346-251X
- Page Range / eLocation ID:
- 129533
- Subject(s) / Keyword(s):
- MIL-101(Cr) SBA-15Carbon capture Hierarchical
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Precious metals have been shown to play a vital role in the selective hydrogenation of α,β-unsaturated aldehydes, but still suffer from challenges to control selectivity. Herein, we have advanced the design of catalysts made out of Pt–Co intermetallic nanoparticles (IMNs) supported on a MIL-101(Cr) MOF (3%Pt y %Co/MIL-101(Cr)), prepared by using a polyol reduction method, as an effective approach to enhance selectivity toward the production of α,β-unsaturated alcohol, the desired product. XRD, N 2 adsorption–desorption, FTIR spectroscopy, SEM, TEM, XPS, CO adsorption, NH 3 -TPD, XANES and EXAFS measurements were used to investigate the structure and surface properties of our 3%Pt y %Co/MIL-101(Cr) catalysts. It was found that the Co-modified 3%Pt y %Co/MIL-101(Cr) catalysts can indeed improve the hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL), reaching a higher selectivity under mild conditions than the monometallic Pt/MIL-101(Cr) catalysts: 95% conversion of CAL with 91% selectivity to COL can be reached with 3%Pt3%Co/MIL-101(Cr). Additionally, high conversion of furfural (97%) along with high selectivity to furfural alcohol (94%) was also attained with the 3%Pt3%Co/MIL-101(Cr) catalyst. The enhanced activity and selectivity toward the unsaturated alcohols are attributed to the electronic and geometric effects derived from the partial charge transfer between Co and Pt through the formation of uniformly dispersed Pt–Co IMNs. Moreover, various characterization results revealed that the addition of Co to the IMPs can promote the Lewis acid sites that facilitate the polarization of the charge-rich CO bonds and their adsorption via their oxygen atom, and also generate new interfacial acid sites.more » « less
- 
            Recently, metal–organic framework (MOF)-based polymeric substrates show promising performance in many engineering and technology fields. However, a commonly known drawback of MOF/polymer composites is MOF crystal encapsulation and reduced surface area. This work reports a facile and gentle strategy to produce self-supported MOF predominant hollow fiber mats. A wide range of hollow MOFs including MIL-53(Al)–NH 2 , Al-PMOF, and ZIF-8 are successfully fabricated by our synthetic method. The synthetic strategy combines atomic layer deposition (ALD) of metal oxides onto polymer fibers and subsequent selective removal of polymer components followed by conversion of remaining hollow metal oxides into freestanding MOF predominant hollow fiber structures. The hollow MOFs show boosted surface area, superb porosity, and excellent pore accessibility, and exhibit a significantly improved performance in CO 2 adsorption (3.30 mmol g −1 ), CO 2 /N 2 separation selectivity (24.9 and 21.2 for 15/85 and 50/50 CO 2 /N 2 mixtures), and catalytic removal of HCHO (complete oxidation of 150 ppm within 60 min).more » « less
- 
            Toxic oxyanions of Cr(VI) can be potentially removed by adsorbents with positively charged surfaces. In this study, we synthesized a stable and insoluble amine-rich polymer composite (CS–PEI–GLA) by crosslinking polyethyleneimine (PEI), a soluble amine-rich synthetic polymer, and chitosan (CS) with glutaraldehyde (GLA). The positively charged amine groups were the main adsorption sites. The batch investigation demonstrated that the adsorbent was able to remove ≥90% of chromium at pH ranging from 2 to 8. Due to deprotonation of the amine groups, chromium removal decreased at higher pH values. The adsorption was fast and reached equilibrium after 45 min. The maximum adsorption capacity was 500 mg g−1 according to the Langmuir isotherm and did not decrease in the presence of monovalent anions. In the column study, the adsorption capacity was the highest when the flow rate was the lowest (5 mL min−1), influent concentration was medium (225 mg L−1), and the bed height was the shortest (3.5 cm). NaOH was the best recovery reagent with recovery of 67% in batch and 31% in the column. The CS–PEI–GLA composite was able to remove 97.1 ± 0.1% chromium in batch and treat 750 mL of electroplating wastewater with a 3.5 cm packed-bed column.more » « less
- 
            Abstract In this study, high yields of CO are reported from CO2using the silica (SiO2) supported perovskite oxide, La0.75Sr0.25FeO3(LSF), composites in the reverse water gas shift chemical looping (RWGS‐CL) process. XRD patterns of materials formed upon adding SBA‐15 to the perovskite sol‐gel precursor solution indicated successful formation of an orthorhombic perovskite oxide structure in the composites. The total surface area increased by ∼300 % with the addition of 50 % LSF to SBA‐15 by mass and surface accessibility of perovskite oxide crystallites was verified by CO2chemisorption and XPS measurements. Composite materials achieved up to a factor of 10 increases in CO yields (∼3.5 vs 0.35 mmol CO/gLSF) compared to pure LSF through six consecutive RWGS‐CL cycles at 700 °C. Following these RWGS‐CL cycles, XRD Scherrer analyses showed that the perovskite oxide in the composite material decreased in crystallite size. This approach to synthesis of supported perovskite oxides is expected to be valuable for large‐scale CO2conversion by RWGS‐CL.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    