skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mobility‐Lifetime Products in Organic Infrared Photodiodes with Peak Absorption at 1550 nm
Abstract Infrared photodiodes based on organic semiconductors are promising for low‐cost sensors that operate at room temperature. However, their realization remains hampered by poor device efficiency. Here, performance limitations are analyzed by evaluating the mobility‐lifetime products and charge collection efficiency of devices operating in the shortwave infrared with a peak absorption at 1550 nm. Through complementary impedance and current‐voltage measurements on devices with different donor‐to‐acceptor semiconductor ratios, a trade‐off between mobility and recombination time and the need to balance between transport and interfacial charge transfer are observed. Thus, this study revisits the mobility‐lifetime metric to shed new light on charge collection constraints in organic infrared photodiodes.  more » « less
Award ID(s):
2222203 2318990 2323668 2323665
PAR ID:
10574091
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Electronic Materials
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum dots (QDs) offer several advantages in optoelectronics such as easy solution processing, strong light absorption and size tunable direct bandgap. However, their major limitation is their poor film mobility and short diffusion length (<250 nm). This has restricted the thickness of QD film to ∼200–300 nm due to the restriction that the diffusion length imposes on film thickness in order to keep efficient charge collection. Such thin films result in a significant decrease in quantum efficiency for λ > 700 nm in QDs photodetector and photovoltaic devices, causing a reduced photoresponsivity and a poor absorption towards the near-infrared part of the sunlight spectrum. Herein, we demonstrate 1 μm thick QDs photodetectors with intercalated graphene charge collectors that avoid the significant drop of quantum efficiency towards λ > 700 nm observed in most QD optoelectronic devices. The 1 μm thick intercalated QD films ensure strong light absorption while keeping efficient charge extraction with a quantum efficiency of 90%–70% from λ = 600 nm to 950 nm using intercalated graphene layers as charge collectors with interspacing distance of 100 nm. We demonstrate that the effect of graphene on light absorption is minimal. We achieve a time-modulation response of <1 s. We demonstrate that this technology can be implemented on flexible PET substrates, showing 70% of the original performance after 1000 times bending test. This system provides a novel approach towards high-performance photodetection and high conversion photovoltaic efficiency with quantum dots and on flexible substrates. 
    more » « less
  2. Abstract Fast reaction between organic salt and lead iodide always leads to small perovskite crystallites and concentrated defects. Here, polyacrylic acid is blended with organic salt, so as to regulate the crystallization in a two‐step growth method. It is observed that addition of polyacrylic acid retards aggregation and crystallization behavior of the organic salt, and slows down the reaction rate between organic salt and PbI 2 , by which “slow‐release effect” is defined. Such effect improves crystallization of perovskite. X‐ray diffraction study shows that, after addition of 2 m m polyacrylic acid, average crystallite size of perovskite increases from ≈40 to ≈90 nm, meanwhile, grain size increases. Thermal admittance spectroscopy study shows that trap density is reduced by nearly one order (especially for deep energy levels). Due to the improved crystallization and reduced trap density, charge recombination is obviously reduced, while lifetime of charge carriers in perovskite film and devices are prolonged, according to time‐resolved photoluminescence and transient photo‐voltage decay curve tests, respectively. Accordingly, power conversion efficiency of the device is promoted from 19.96 (±0.41)% to 21.84 (±0.25)% (with a champion efficiency of 22.31%), and further elevated to 24.19% after surface modification by octylammonium iodide. 
    more » « less
  3. An array of compact, high-bandwidth (>200 MHz) and low-cost optical photodiodes has been developed and implemented on the PHASe MApping (PHASMA) experiment. Using purpose-built electronics, an array of 16 photodetectors was constructed and used to monitor broadband (1–5 MHz) fluctuations in light intensity emitted by flux ropes undergoing electron-only magnetic reconnection. These measurements reveal a swath of oscillatory behavior, including wave propagation inward toward the diffusion region at approximately the local electron Alfvén speed. Custom 3D-printed collection optics and mounting hardware allow quick reconfiguration of the array for radial or axial measurements. The electronics design is flexible enough to be used with other current-sourcing transducers, such as avalanche photodiodes; silicon photomultipliers; and infrared, x-ray, and UV photodiodes. A noise-rejecting electrical layout allows for low-noise operation close to pulsed plasma discharges. A 16-channel, 64-pixel tomographic array was constructed and initial reconstructions are presented. 
    more » « less
  4. Abstract The electronic effects of structural defects introduced through chemical doping are challenging to characterize in organic semiconductors, especially when measured in thin film devices where the performance is sensitive to structural heterogeneity. Here, a simple approach is presented to probe the roles of indirect and direct electronic coupling on charge transport in a series of compositionally varied charge‐transfer single crystals. In this system, carbazole (CBZ) is controllably substituted withN‐methylcarbazole (NMCBZ) in the cocrystal formed between CBZ and 1,3,4,5,7,8‐hexafluoro‐11,11,12,12‐tetracyano‐2,6‐naphthoquinodimethane (F6TNAP), producing a series of single crystals with compositions that range between 0 – 50% CBZ replacement and preserve the structure type of the parent cocrystal. Gas‐phase electronic structure calculations predict that substitutional replacement of CBZ with NMCBZ introduces two competing effects: (i) strengthening of indirect coupling by increasing the average degree of charge transfer and (ii) weakening of direct exchange by increasing the distance between adjacent charge‐transfer π‐stacks. Charge transport measurements reveal an initial decrease in the mobility upon substitution of CBZ with NMCBZ, rationalized by a combination of hole‐trapping and weakened direct coupling with increasing NMCBZ content. Critically, these results demonstrate the potential for solid solutions to offer insight into charge transport mechanisms and their chemical tunability in molecular electronic materials. 
    more » « less
  5. null (Ed.)
    Emerging infrared photodetectors have reported a high level of gain using trap-assisted photomultiplication mechanisms enabling significant enhancements in their sensitivity. This work investigates a series of interfacial materials in order to understand how charge blocking layers facilitate trap-assisted photomultiplication in organic shortwave infrared detectors. The hole blocking layers induce accumulation of photogenerated holes at the interface, which in turn lowers the electron injection barrier and enables photomultiplication. In addition to examining photoresponse characteristics, the device dark current is analyzed by fitting to a charge injection model to quantify injection barriers. This demonstrates that the electric field induced barrier lowering effect plateaus with increasing applied bias. Among the interfaces studied, the best detectivity is observed using the hole blocking layer bathophenanthroline (Bphen), which reduces the probability of recombination and extends the lifetime of trapped holes to increase photomultiplication. This leads to a responsivity of 5.6 A W −1 (equivalent external quantum efficiency = 660% at 1050 nm) and detectivity of 10 9 Jones with broadband operation from 600 nm to 1400 nm. 
    more » « less