This paper aims to expand understanding of a poorly known group of cestodes that parasitize an intriguingly diverse suite of elasmobranchs. The group’s three currently described members (i.e., Pentaloculum macrocephalum, Pentaloculum hoi, and Zyxibothrium kamienae) parasitize an electric ray, a carpet shark, and a skate, respectively. Pentaloculum grahami n. sp. is described from a second genus of carpet shark, specifically Parascyllium collare, in Australia. Zyxibothrium duffyi n. sp. and Zyxibothrium healyae n. sp. are described from the deep-sea skates Brochiraja asperula and Brochiraja spinifera, respectively off New Zealand. The three new species share distinctive bothridia that bear a small number of large, circular, facial loculi and lateral bands of vitelline follicles that converge posterior to the ovary—features which are found in all other members of these genera. Zyxibothrium healyae n. sp. is unique in possessing three, rather than four or five, facial loculi. Zyxibothrium duffyi n. sp. possesses a combination of five facial loculi and vitelline follicles that stop short of the anterior margin of the proglottid. Pentaloculum grahami n. sp. is the largest member of the group with the greatest number of proglottids. Based on striking similarities in scolex morphology, Pentaloculum and Zyxibothrium have been hypothesized to belong to a distinct subgroup of “tetraphyllideans” provisionally designated as Clade 1. Based on sequence data for the D1–D3 region of the 28S rDNA gene generated for species of Zyxibothrium for the first time, we confirm the reciprocal monophyly of both genera as well as the monophyly of Clade 1 and its status as a distinct lineage among the “Tetraphyllidea”. This work also suggests that the presence of five facial loculi is homoplasious given this character state is found in members of both genera. The new species expand the host associations of Clade 1 to include additional skate and carpet shark genera. Moving forward we would expect to find additional members of this group parasitizing other species of parascyliid carpet sharks as well as other species of the rajid genus Malacoraja and the arhynchobatid genus Brochiraja. Here we have doubled the number of described species in the taxon referred to as Clade 1 while simultaneously expanding our understanding of the morphology and anatomy of its members. This additional information will help inform the ultimate revision of the ordinal classification of the cestodes to address the highly polyphyletic nature of the order “Tetraphyllidea” as it is currently configured.
more »
« less
Phylogeny of the cestode family Escherbothriidae (Cestoda: Rhinebothriidea) reveals unexpected patterns of association with skate hosts
The rhinebothriidean tapeworm family Escherbothriidae has recently been expanded to include the genus Ivanovcestus, species of which parasitise arhynchobatid skates. Similarities in morphology and host associations between Ivanovcestus and Semiorbiseptum – a genus yet to be assigned to one of the families in the order Rhinebothriidea – led us to explore the possibility that Semiorbiseptum might also belong in the Escherbothriidae. Morphological similarities with Scalithrium ivanovae, Scalithrium kirchneri and Rhinebothrium scobinae, all of which also parasitise arhynchobatid skates, raised questions regarding the generic placements of these species. In addition, new collections from the skate Sympterygia brevicaudata revealed two new species that morphologically resemble species of Ivanovcestus. A combination of morphological and molecular data were used to assess the generic placement of the newly discovered species and refine our understanding of the membership of the family Escherbothriidae. Sequence data for the D1–D3 region of the 28S rDNA gene were generated de novo for 14 specimens of 7 rhinebothriidean species and combined with comparable published data to represent all 6 families in the Rhinebothriidea in the analysis. The phylogenetic tree resulting from maximum likelihood analysis strongly supports the inclusion of the genus Semiorbiseptum in the family Escherbothriidae. Our work also suggests that the skate-hosted species previously assigned to Scalithrium and Rhinebothrium are also members of Semiorbiseptum and that Ivanovcestus is a junior synonym of Semiorbiseptum. Six species are transferred to Semiorbiseptum, bringing the total number of species in the genus to ten. The diagnosis of Semiorbiseptum is amended to accommodate the additional species. A second species in the previously monotypic type genus of the family, Escherbothrium, is described. The diagnosis of the Escherbothriidae is amended to include the new and transferred species. This study underscores the importance of integrating morphological and molecular data in bringing resolution to cestode systematics. We believe our findings provide a robust foundation for future research into the evolutionary history and host associations of cestodes within the order Rhinebothriidea and beyond. These also highlight the importance of expanding our understanding of skate-hosted cestodes. ZooBank: urn:lsid:zoobank.org:pub:8052AFCA-5FBD-4430-95F4-0E5E368DEA3D
more »
« less
- PAR ID:
- 10574092
- Editor(s):
- Worsaae, Katrine
- Publisher / Repository:
- CSIRO Publishing
- Date Published:
- Journal Name:
- Invertebrate Systematics
- Volume:
- 38
- Issue:
- 4
- ISSN:
- 1445-5226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Rhoptrobothriidae are one of the more enigmatic families of cestodes of elasmobranchs. Opinions on the taxonomic status of the family’s three original genera (i.e., Myzophyllobothrium, Rhoptrobothrium, and Myzocephalus) have varied over the 115 years since they were erected. Some authors have considered all three valid, others have considered Rhoptrobothrium to be a synonym of Myzopyllobothrium or a genus inquirendum, yet others have considered Myzocephalus to be a synonym of the phyllobothriid genus Thysanocephalum. All three genera were established for specimens collected from eagle rays off Sri Lanka. The erection of Mixophyllobothrium for two specimens from a cowtail stingray off India three decades ago added additional confusion to the situation, with some authors considering it valid and others a synonym of Myzocephalus. These disagreements stem largely from differences in interpretation of the complex morphology of the scolex of members of these genera. Furthermore, with the exception of Rhoptrobothrium comprising four species, each genus is monotypic. All but Rhoptrobothrium has not been considered in detail for nearly a century, largely because of a lack of available material. The taxonomic status of these genera is assessed here based on light and scanning electron microscopy, and molecular data generated from new material collected from eagle rays off Indonesian and Malaysian Borneo, Japan, Sri Lanka, and Viet Nam. Morphological work indicates that the genera differ largely only in the degree of folding of the four remi that extend from the cephalic peduncle. A molecular phylogeny based on sequence data for the D1–D3 region of the 28S rRNA gene, which include new data for eight specimens of four species, indicates that Myzophyllobothrium, Myzocephalus, and Rhoptrobothrium are not mutually monophyletic. The latter two genera and Mixophyllobothrium are considered synonyms of Myzophyllobothrium and five species are transferred to that genus. Myzophyllobothrium okamuri n. comb. is considered a species inquirendum. Myzophyllobothrium nagasawai n. sp. is described from Aetobatus narutobiei off Japan. Myzophyllobothrium narinari n. comb. is re-described based on newly collected cestodes from the type host and locality (i.e., Aetobatus ocellatus off Sri Lanka). Despite consisting of only a single genus, the family status of the group is retained in recognition of the unusual configuration of the scolex, which bears four biloculate bothridia and four remi extending from the cephalic peduncle. The ordinal placement of the family remains uncertain, but affinities with the Phyllobothriidea, rather than “Tetraphyllidea” are considered.more » « less
-
The systematics of humble-in-appearance brown spiders (“marronoids”), within a larger group of spiders with a modified retrolateral tibial apophysis (the RTA Clade), has long vexed arachnologists. Although not yet fully settled, recent phylogenomics has allowed the delimitation and phylogenetic relationships of families within marronoids to come into focus. Understanding relationships within these families still awaits more comprehensive generic-level sampling, as the majority of described marronoid genera remain unsampled for phylogenomic data. Here we conduct such an analysis in the family Cybaeidae Banks, 1892. We greatly increase generic-level sampling, assembling ultraconserved element (UCE) data for 18 of 22 described cybaeid genera, including all North American genera, and rigorously test family monophyly using a comprehensive outgroup taxon sample. We also conduct analyses of traditional Sanger loci, allowing curation of some previously published data. Our UCE phylogenomic results support the monophyly of recognized cybaeids, with strongly supported internal relationships, and evidence for five primary molecular subclades. We hypothesize potential morphological synapomorphies for most of these subclades, bringing a robust phylogenomic underpinning to cybaeid classification. A new cybaeid genusSiskiyugen. nov.and speciesSiskiyu armillasp. nov.is discovered and described from far northern California and adjacent southern Oregon and a new species in the elusive genusCybaeozyga,C. furtivasp. nov., is described from far northern California.more » « less
-
null (Ed.)Abstract New genera are erected for three clades of tapeworms originally discovered using molecular sequence data. The morphological features of each are characterized after examination of specimens with light and scanning electron microscopy. Rockacestus gen. nov. parasitizes skates. Ruhnkebothrium gen. nov. parasitizes hammerhead sharks. Yamaguticestus gen. nov. parasitizes small squaliform sharks and catsharks. The novelty of these genera is supported by a taxonomically comprehensive molecular phylogenetic analysis of the D1–D3 region of the 28S rDNA gene, which, with the addition of newly generated sequence data, is the first to include representation of 15 of the 18 genera of phyllobothriideans plus the three new genera. Five new species are described from elasmobranchs in the western Atlantic Ocean, the Gulf of California, Chile, the Falkland Islands and South Africa to help circumscribe the new genera. Two of the genera provide appropriate generic homes for ten species of phyllobothriideans from catsharks and skates with uncertain generic affinities and thus resolve longstanding taxonomic issues. Given that these genera parasitize some of the most poorly sampled groups of elasmobranchs (i.e. hammerhead sharks, squaliform sharks, catsharks and skates), based on the strict degree of host specificity observed, we predict that further work on other members of these groups will yield as many as 200 additional species in these three genera of tapeworms globally. This brings the total number of genera in the Phyllobothriidea to 21.more » « less
-
Worsaae, Katrine (Ed.)The three members of the lecanicephalidean tapeworm family Eniochobothriidae are unusual among tapeworms in that they lack a vagina and possess a series of expanded proglottids forming a trough at the anterior end of their body. They exclusively parasitise cownose rays of the genus Rhinoptera (Myliobatiformes: Rhinopteridae). New collections from six of the nine known species of cownose rays from the waters off Australia, Mexico, Mozambique, Senegal, Taiwan and the United States (off Mississippi, Louisiana and South Carolina) yielded eight new species and a new genus of eniochobothriids. Here we erect Amiculucestus, gen. nov. and describe six of the eight new species – four in the new genus and two in Eniochobothrium – expanding the number of genera in the family to two and the number of described species in the family to nine. Morphological work was based on light and scanning electron microscopy. The tree resulting from a maximum likelihood analysis of sequence data for the D1–D3 region of the 28S rDNA gene for 11 species of eniochobothriids supports the reciprocal monophyly of both genera. The mode of attachment to the mucosal surface of the spiral intestine of the host was investigated using histological sections of worms in situ. These cestodes appear to use the anterior trough-like portion of their body, which consists of an unusual series of barren proglottids, rather than their scolex, to attach to the mucosal surface. Based on our new collections, we estimate that the total number of eniochobothriids across the globe does not exceed 27 species. ZooBank LSID: urn:lsid:zoobank.org:pub:0740EC72‐AC3F‐43AA‐BD41‐B9820BA9D0CEmore » « less
An official website of the United States government

