Abstract There is no consensus on how quickly the earth's ice sheets are melting due to global warming, nor on the ramifications to sea level rise. Due to its potential effects on coastal populations and global economies, sea level rise is a grave concern, making ice melt rates an important area of study. The ice‐sheet science community consists of two groups that perform related but distinct kinds of research: a data community, and a model building community. The data community characterizes past and current states of the ice sheets by assembling data from field and satellite observations. The modeling community forecasts the rate of ice‐sheet decline with computational models validated against observations. Although observational data and models depend on one another, these two groups are not well integrated. Better coordination between data collection efforts and modeling efforts is imperative if we are to improve our understanding of ice sheet loss rates. We present a new science gateway,GHub, a collaboration space for ice sheet scientists. This web‐accessible gateway will host datasets and modeling workflows, and provide access to codes that enable tool building by the ice sheet science community. Using GHub, we will collect and centralize existing datasets, creating data products that more completely catalog the ice sheets of Greenland and Antarctica. We will build workflows for model validation and uncertainty quantification, extending existing ice sheet models. Finally, we will host existing community codes, enabling scientists to build new tools utilizing them. With this new cyberinfrastructure, ice sheet scientists will gain integrated tools to quantify the rate and extent of sea level rise, benefitting human societies around the globe.
more »
« less
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Abstract. The Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2) is a natural progression of previous and ongoing model intercomparison exercises that have focused on the simulation of ice-sheet and ocean processes in Antarctica. The previous exercises motivate the move towards realistic configurations, as well as more diverse model parameters and resolutions. The main objective of MISOMIP2 is to investigate the performance of existing ocean and coupled ice-sheet–ocean models in a range of Antarctic environments through comparisons to observational data. We will assess the status of ice-sheet–ocean modelling as a community and identify common characteristics of models that are best able to capture observed features. As models are highly tuned based on present-day data, we will also compare their sensitivity to prescribed abrupt atmospheric perturbations leading to either very warm or slightly warmer ocean conditions compared to the present day. The approach of MISOMIP2 is to welcome contributions of models as they are, including global and regional configurations, but we request standardized variables and common grids for the outputs. We target the analysis at two specific regions, the Amundsen Sea and the Weddell Sea, since they describe two different ocean environments and have been relatively well observed compared to other areas of Antarctica. An observational “MIPkit” synthesizing existing ocean and ice-sheet observations for a common period is provided to evaluate ocean and ice-sheet models in these two regions.
more »
« less
- Award ID(s):
- 2151295
- PAR ID:
- 10574096
- Publisher / Repository:
- EGU
- Date Published:
- Journal Name:
- Geoscientific Model Development
- Volume:
- 17
- Issue:
- 18
- ISSN:
- 1991-9603
- Page Range / eLocation ID:
- 7105 to 7139
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st centurynull (Ed.)Abstract. Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution inresponse to different climate scenarios and assess the mass loss that would contribute tofuture sea level rise. However, there is currently no consensus on estimates of the future massbalance of the ice sheet, primarily because of differences in the representation of physicalprocesses, forcings employed and initial states of ice sheet models. This study presentsresults from ice flow model simulations from 13 international groups focusing on the evolutionof the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet ModelIntercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from theCoupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climatemodel results. Simulations of the Antarctic ice sheet contribution to sea level rise in responseto increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent(SLE) under Representative ConcentrationPathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment withconstant climate conditions and should therefore be added to the mass loss contribution underclimate conditions similar to present-day conditions over the same period. The simulated evolution of theWest Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighingthe increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelfcollapse, here assumed to be caused by large amounts of liquid water ponding at the surface ofice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without iceshelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, thecalibration of these melt rates based on oceanic conditions taken outside of ice shelf cavitiesand the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario basedon two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared tosimulations done under present-day conditions for the two CMIP5 forcings used and displaylimited mass gain in East Antarctica.more » « less
-
null (Ed.)Abstract. Climate model projections have previously been used to compute ice shelf basal melt rates in ice sheet models, but the strategies employed – e.g., ocean input, parameterization, calibration technique, and corrections – have varied widely and are often ad hoc. Here, a methodology is proposed for the calculation of circum-Antarctic basal melt rates for floating ice, based on climate models, that is suitable for ISMIP6, the Ice Sheet Model Intercomparison Project for CMIP6 (6th Coupled Model Intercomparison Project). The past and future evolution of ocean temperature and salinity is derived from a climate model by estimating anomalies with respect to the modern day, which are added to a present-day climatology constructed from existing observational datasets. Temperature and salinity are extrapolated to any position potentially occupied by a simulated ice shelf. A simple formulation is proposed for a basal melt parameterization in ISMIP6, constrained by the observed temperature climatology, with a quadratic dependency on either the nonlocal or local thermal forcing. Two calibration methods are proposed: (1) based on the mean Antarctic melt rate (MeanAnt) and (2) based on melt rates near Pine Island's deep grounding line (PIGL). Future Antarctic mean melt rates are an order of magnitude greater in PIGL than in MeanAnt. The PIGL calibration and the local parameterization result in more realistic melt rates near grounding lines. PIGL is also more consistent with observations of interannual melt rate variability underneath Pine Island and Dotson ice shelves. This work stresses the need for more physics and less calibration in the parameterizations and for more observations of hydrographic properties and melt rates at interannual and decadal timescales.more » « less
-
Observational evidence indicates that the West Antarctic Ice Sheet (WAIS) is losing mass at an accelerating rate. Impacts to global climate resulting from changing ocean circulation patterns due to increased freshwater runoff from Antarctica in the future could have significant implications for global heat transport, but to-date this topic has not been investigated using complex numerical models with realistic freshwater forcing. Here, we present results from a high resolution fully coupled ocean-atmosphere model (CESM 1.2) forced with runoff from Antarctica prescribed from a high resolution regional ice sheet-ice shelf model. Results from the regional simulations indicate a potential freshwater contribution from Antarctica of up to 1 m equivalent sea level rise by the end of the century under RCP 8.5 indicating that a substantial input of freshwater into the Southern Ocean is possible. Our high resolution global simulations were performed under IPCC future climate scenarios RCP 4.5 and 8.5. We will present results showing the impact of WAIS collapse on global ocean circulation, sea ice, air temperature, and salinity in order to assess the potential for abrupt climate change triggered by WAIS collapse.more » « less
-
Abstract. The ice sheet model intercomparison project for CMIP6 (ISMIP6) effort brings together the ice sheet and climate modeling communities to gain understanding of the ice sheet contribution to sea level rise. ISMIP6 conducts stand-alone ice sheet experiments that use space- and time-varying forcing derived from atmosphere–ocean coupled global climate models (AOGCMs) to reflect plausible trajectories for climate projections. The goal of this study is to recommend a subset of CMIP5 AOGCMs (three core and three targeted) to produce forcing for ISMIP6 stand-alone ice sheet simulations, based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century. The selection is performed separately for Greenland and Antarctica. Model evaluation over the historical period focuses on variables used to generate ice sheet forcing. For stage (i), we combine metrics of atmosphere and surface ocean state (annual- and seasonal-mean variables over large spatial domains) with metrics of time-mean subsurface ocean temperature biases averaged over sectors of the continental shelf. For stage (ii), we maximize the diversity of climate projections among the best-performing models. Model selection is also constrained by technical limitations, such as availability of required data from RCP2.6 and RCP8.5 projections. The selected top three CMIP5 climate models are CCSM4, MIROC-ESM-CHEM, and NorESM1-M for Antarctica and HadGEM2-ES, MIROC5, and NorESM1-M for Greenland. This model selection was designed specifically for ISMIP6 but can be adapted for other applications.more » « less