skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The sandpaper theory of flow–topography interaction for homogeneous shallow-water systems
Recent studies reveal the dramatic impact of seafloor roughness on the dynamics and stability of broad oceanic flows. These findings motivate the development of parameterizations that concisely represent the effects of small-scale bathymetric patterns in theoretical and coarse-resolution numerical circulation models. The previously reported quasi-geostrophic ‘sandpaper’ theory of flow–topography interactiona prioriassumes gentle topographic slopes and weak flows with low Rossby numbers. Since such conditions are often violated in the ocean, we now proceed to formulate a more general model based on shallow-water equations. The new version of the sandpaper model is validated by comparing roughness-resolving and parametric simulations of the flow over a corrugated seamount.  more » « less
Award ID(s):
2241625
PAR ID:
10574260
Author(s) / Creator(s):
Publisher / Repository:
CUP
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
977
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seafloor roughness profoundly influences the pattern and dynamics of large-scale oceanic flows. However, these kilometre-scale topographic patterns are unresolved by global numerical Earth system models and will remain subgrid for the foreseeable future. To properly represent the effects of small-scale bathymetry in analytical and coarse-resolution numerical models, we develop the stratified ‘sandpaper’ theory of flow–topography interaction. This model, which is based on the multilayer shallow-water framework, extends its barotropic antecedent to stratified flows. The proposed theory is successfully tested on the configuration representing the interaction of a zonal current with a corrugated cross-flow ridge. 
    more » « less
  2. We introduce a wall model for large-eddy simulation (WMLES) applicable to rough surfaces with Gaussian and non-Gaussian distributions for both the transitionally and fully rough regimes. The model is applicable to arbitrary complex geometries where roughness elements are assumed to be underresolved, i.e. subgrid-scale roughness. The wall model is implemented using a multi-hidden-layer feedforward neural network, with the mean geometric properties of the roughness topology and near-wall flow quantities serving as input. The optimal set of non-dimensional input features is identified using information theory, selecting variables that maximize information about the output while minimizing redundancy among inputs. The model also incorporates a confidence score based on Gaussian process modelling, enabling the detection of potentially low model performance for untrained rough surfaces. The model is trained using a direct numerical simulation (DNS) roughness database comprising approximately 200 cases. The roughness geometries for the database are selected from a large repository through active learning. This approach ensures that the rough surfaces incorporated into the database are the most informative, achieving higher model performance with fewer DNS cases compared with passive learning techniques. The performance of the model is evaluated bothaprioriandaposterioriin WMLES of turbulent channel flows with rough walls. Over 550 channel flow cases are considered, including untrained roughness geometries, roughness Reynolds numbers and grid resolutions for both transitionally and fully rough regimes. Our rough-wall model offers higher accuracy than existing models, generally predicting wall shear stress within an accuracy range of 1%–15 %. The performance of the model is also assessed on a high-pressure turbine blade with two different rough surfaces. We show that the new wall model predicts the skin friction and the mean velocity deficit induced by the rough surface on the blade within 1%–10 % accuracy except the region with transition or shock waves. This work extends the building-block flow wall model (BFWM) introduced by Lozano-Durán & Bae (2023.J. Fluid Mech.963, A35) for smooth walls, expanding the BFWM framework to account for rough-wall scenarios. 
    more » « less
  3. Direct numerical simulations are performed for incompressible, turbulent channel flow over a smooth wall and different sinusoidal wall roughness configurations at a constant $$Re_\tau = 720$$ . Sinusoidal walls are used to study the effects of well-defined geometric features of roughness-amplitude, $$a$$ , and wavelength, $$\lambda$$ , on the flow. The flow in the near-wall region is strongly influenced by both $$a$$ and $$\lambda$$ . Establishing appropriate scaling laws will aid in understanding the effects of roughness and identifying the relevant physical mechanisms. Using inner variables and the roughness function to scale the flow quantities provides support for Townsend's hypothesis, but inner scaling is unable to capture the flow physics in the near-wall region. We provide modified scaling relations considering the dynamics of the shear layer and its interaction with the roughness. Although not a particularly surprising observation, this study provides clear evidence of the dependence of flow features on both $$a$$ and $$\lambda$$ . With these relations, we are able to collapse and/or align peaks for some flow quantities and, thus, capture the effects of surface roughness on turbulent flows even in the near-wall region. The shear-layer scaling supports the hypothesis that the physical mechanisms responsible for turbulent kinetic energy production in turbulent flows over rough walls are greatly influenced by the shear layer and its interaction with the roughness elements. Finally, a semiempirical model is developed to predict the contribution of pressure and skin friction drag on the roughness element based purely on its geometric parameters and the corresponding shear-layer velocity scale. 
    more » « less
  4. Abstract Oceanographic observations have revealed that basin‐scale Rossby waves can travel at speeds systematically exceeding values predicted by linear theory based on the flat‐bottom approximation. Using the recently developed parametric “sandpaper” theory of seafloor roughness, we construct a set of analytical solutions for the vertical structure and dispersion relationship of Rossby waves. We then use simulations to confirm these results and show that baroclinic Rossby waves can be accelerated by irregular small‐scale rough topography by up to a factor of 1.6 relative to their flat‐bottom counterparts. This acceleration is most extreme at high latitudes and wavelengths of approximately 600 km. Our investigation demonstrates the importance of relatively small‐scale processes for the large‐scale flow dynamics in general and baroclinic Rossby waves in particular. 
    more » « less
  5. Abstract Aims This study investigates how lumen roughness and urethral length influence urinary flow speed. Methods We used micro‐computed tomography scans to measure the lumen roughness and dimensions for rabbits, cats, and pigs. We designed and fabricated three‐dimensional‐printed urethra mimics of varying roughness and length to perform flow experiments. We also developed a corresponding mathematical model to rationalize the observed flow speed. Results We update the previously reported relationship between body mass and urethra length and diameter, now including 41 measurements for urethra length and 10 measurements for diameter. We report the relationship between lumen diameter and roughness as a function of position down the urethra for rabbits, cats, and pigs. The time course of urinary speed from our mimics is reported, as well as the average speed as a function of urethra length. Conclusions Based on the behavior of our mimics, we conclude that the lumen roughness in mammals reduces flow speed by up to 25% compared to smooth urethras. Urine flows fastest when the urethra length exceeds 25 times its diameter. Longer urethras do not drain faster due to viscous effects counteracting the additional gravitational head. However, flows with our urethra mimics are still 6 times faster than those observed in nature, suggesting that further work is needed to understand flow resistance in the urethra. 
    more » « less