In this paper, we consider the inverse problem of recovering a sound soft scatterer from the measured scattered field. The scattered field is assumed to be induced by a point source on a curve/surface that is known. Here, we propose and analyze new direct sampling methods for this problem. The first method we consider uses a far-field transformation of the near-field data, which allows us to derive explicit bounds in the resolution analysis for the direct sampling method’s imaging functional. Two direct sampling methods are studied, using the far-field transformation. For these imaging functionals, we use the Funk–Hecke identities to study the resolution analysis. We also study a direct sampling method for the case of the given Cauchy data. Numerical examples are given to show the applicability of the new imaging functionals for recovering a sound soft scatterer with full and partial aperture data. 
                        more » 
                        « less   
                    
                            
                            Direct sampling for recovering a clamped cavity from the biharmonic far-field data
                        
                    
    
            Abstract This paper concerns the inverse shape problem of recovering an unknown clamped cavity embedded in a thin infinite plate. The model problem is assumed to be governed by the two-dimensional biharmonic wave equation in the frequency domain. Based on the far-field data, a resolution analysis is conducted for cavity recovery via the direct sampling method. The Funk–Hecke integral identity is employed to analyze the performance of two imaging functions. Our analysis demonstrates that the same imaging functions commonly used for acoustic inverse shape problems are applicable to the biharmonic wave context. This work presents the first extension of direct sampling methods to biharmonic waves using far-field data. Numerical examples are provided to illustrate the effectiveness of these imaging functions in recovering a clamped cavity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2208256
- PAR ID:
- 10574459
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Inverse Problems
- Volume:
- 41
- Issue:
- 3
- ISSN:
- 0266-5611
- Format(s):
- Medium: X Size: Article No. 035013
- Size(s):
- Article No. 035013
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In this paper, we consider the inverse scattering problem for recovering either an isotropic or anisotropic scatterer from the measured scattered field initiated by a point source. We propose two new imaging functionals for solving the inverse problem. The first one employs a 'far-field' transform to the data which we then use to derive and provide an explicit decay rate for the imaging functional. In order to analyze the behavior of this imaging functional we use the factorization of the near field operator as well as the Funk-Hecke integral identity. For the second imaging functional the Cauchy data is used to define the functional and its behavior is analyzed using the Green's identities. Numerical experiments are given in two dimensions for both isotropic and anisotropic scatterers.more » « less
- 
            Abstract In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping intoH1of a small ball.more » « less
- 
            We consider the inverse problem of determining the geometry of penetrable objects from scattering data generated by one incident wave at a fixed frequency. We first study an orthogonality sampling type method which is fast, simple to implement, and robust against noise in the data. This sampling method has a new imaging functional that is applicable to data measured in near field or far field regions. The resolution analysis of the imaging functional is analyzed where the explicit decay rate of the functional is established. A connection with the orthogonality sampling method by Potthast is also studied. The sampling method is then combined with a deep neural network to solve the inverse scattering problem. This combined method can be understood as a network using the image computed by the sampling method for the first layer and followed by the U-net architecture for the rest of the layers. The fast computation and the knowledge from the results of the sampling method help speed up the training of the network. The combination leads to a significant improvement in the reconstruction results initially obtained by the sampling method. The combined method is also able to invert some limited aperture experimental data without any additional transfer training.more » « less
- 
            Abstract This paper is concerned with the inverse problem of determining the shape of penetrable periodic scatterers from scattered field data. We propose a sampling method with a novel indicator function for solving this inverse problem. This indicator function is very simple to implement and robust against noise in the data. The resolution and stability analysis of the indicator function is analyzed. Our numerical study shows that the proposed sampling method is more stable than the factorization method and more efficient than the direct or orthogonality sampling method in reconstructing periodic scatterers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
