skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Knowns and Unknowns in Future Human Pressures on the Ocean
Abstract Growing demands on ocean resources are placing increasing pressures on ocean ecosystems. To assess the current state of knowledge of future human pressures on the ocean, we conducted a literature review of recent and projected trends of 25 anthropogenic pressures, comprising most of the identified human pressures on the global oceans. To better understand gaps in the data, we developed a comprehensive framework of the activities contributing to each pressure. All pressures were allocated to five categories (biological disruption, disturbance and removal, altered ocean chemistry, pollution, and climate pressures). All pressures are expected to worsen in the future under business‐as‐usual scenarios (or similar) based on past trajectories and/or models of future scenarios. Eight of the pressures assessed have not been projected into the future (diseases and pathogens, introduced coastal wildlife predation, disruption to sediment dynamics, wildlife strikes, organic and inorganic chemical pollution, light and noise pollution), likely due to the limited availability of data describing current pressures, the challenges of modeling future pressures, and high levels of uncertainty. We thus recommend they receive priority attention to assess their likely future trajectories, given their potential magnitude of influence.  more » « less
Award ID(s):
2019902
PAR ID:
10574389
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Earth's Future
Volume:
12
Issue:
9
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oceans play critical roles in the lives, economies, cultures, and nutrition of people globally, yet face increasing pressures from human activities that put those benefits at risk. To anticipate the future of the world's ocean, we review the many human activities that impose pressures on marine species and ecosystems, evaluating their impacts on marine life, the degree of scientific uncertainty in those assessments, and the expected trajectory over the next few decades. We highlight that fundamental research should prioritize areas of high potential impact and greater uncertainty about ecosystem vulnerability, such as emerging fisheries, organic chemical pollution, seabed mining, and the interactions of cumulative pressures, and deprioritize research on areas that demonstrate little impact or are well understood, such as plastic pollution and ship strikes to marine fauna. There remains hope for a productive and sustainable future ocean, but the window of opportunity for action is closing. 
    more » « less
  2. Human–wildlife conflict is an important factor in the modern biodiversity crisis and has negative effects on both humans and wildlife (such as property destruction, injury, or death) that can impede conservation efforts for threatened species. Effectively addressing conflict requires an understanding of where it is likely to occur, particularly as climate change shifts wildlife ranges and human activities globally. Here, we examine how projected shifts in cropland density, human population density, and climatic suitability—three key drivers of human–elephant conflict—will shift conflict pressures for endangered Asian and African elephants to inform conflict management in a changing climate. We find that conflict risk (cropland density and/or human population density moving into the 90th percentile based on current-day values) increases in 2050, with a larger increase under the high-emissions “regional rivalry” SSP3 - RCP 7.0 scenario than the low-emissions “sustainability” SSP1 - RCP 2.6 scenario. We also find a net decrease in climatic suitability for both species along their extended range boundaries, with decreasing suitability most often overlapping increasing conflict risk when both suitability and conflict risk are changing. Our findings suggest that as climate changes, the risk of conflict with Asian and African elephants may shift and increase and managers should proactively mitigate that conflict to preserve these charismatic animals. 
    more » « less
  3. Abstract Global change is increasing the frequency and severity of human‐wildlife interactions by pushing people and wildlife into increasingly resource‐limited shared spaces. To understand the dynamics of human‐wildlife interactions and what may constitute human‐wildlife coexistence in the Anthropocene, there is a critical need to explore the spatial, temporal, sociocultural and ecological variables that contribute to human‐wildlife conflicts in urban areas.Due to their opportunistic foraging and behavioural flexibility, coyotes (Canis latrans) frequently interact with people in urban environments. San Francisco, California, USA hosts a very high density of coyotes, making it an excellent region for analysing urban human‐coyote interactions and attitudes toward coyotes over time and space.We used a community‐curated long‐term data source from San Francisco Animal Care and Control to summarise a decade of coyote sightings and human‐coyote interactions in San Francisco and to characterise spatiotemporal patterns of attitudes and interaction types in relation to housing density, socioeconomics, pollution and human vulnerability metrics, and green space availability.We found that human‐coyote conflict reports have been significantly increasing over the past 5 years and that there were more conflicts during the coyote pup‐rearing season (April–June), the dry season (June–September) and the COVID‐19 pandemic. Conflict reports were also more likely to involve dogs and occur inside of parks, despite more overall sightings occurring outside of parks. Generalised linear mixed models revealed that conflicts were more likely to occur in places with higher vegetation greenness and median income. Meanwhile reported coyote boldness, hazing and human attitudes toward coyotes were also correlated with pollution burden and human population vulnerability indices.Synthesis and applications: Our results provide compelling evidence suggesting that human‐coyote conflicts are intimately associated with social‐ecological heterogeneities and time, emphasizing that the road to coexistence will require socially informed strategies. Additional long‐term research articulating how the social‐ecological drivers of conflict (e.g. human food subsidies, interactions with domestic species, climate‐induced droughts, socioeconomic disparities, etc.) change over time will be essential in building adaptive management efforts that effectively mitigate future conflicts from occurring. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract An understanding of the combined effects of climate change (CC) and other anthropogenic stressors, such as chemical exposures, is essential for improving ecological risk assessments of vulnerable ecosystems. In the Great Barrier Reef, coral reefs are under increasingly severe duress from increasing ocean temperatures, acidification, and cyclone intensities associated with CC. In addition to these stressors, inshore reef systems, such as the Mackay–Whitsunday coastal zone, are being impacted by other anthropogenic stressors, including chemical, nutrient, and sediment exposures related to more intense rainfall events that increase the catchment runoff of contaminated waters. To illustrate an approach for incorporating CC into ecological risk assessment frameworks, we developed an adverse outcome pathway network to conceptually delineate the effects of climate variables and photosystem II herbicide (diuron) exposures on scleractinian corals. This informed the development of a Bayesian network (BN) to quantitatively compare the effects of historical (1975–2005) and future projected climate on inshore hard coral bleaching, mortality, and cover. This BN demonstrated how risk may be predicted for multiple physical and biological stressors, including temperature, ocean acidification, cyclones, sediments, macroalgae competition, and crown of thorns starfish predation, as well as chemical stressors such as nitrogen and herbicides. Climate scenarios included an ensemble of 16 downscaled models encompassing current and future conditions based on multiple emission scenarios for two 30‐year periods. It was found that both climate‐related and catchment‐related stressors pose a risk to these inshore reef systems, with projected increases in coral bleaching and coral mortality under all future climate scenarios. This modeling exercise can support the identification of risk drivers for the prioritization of management interventions to build future resilient reefs.Integr Environ Assess Manag2024;20:401–418. © 2023 Norwegian Institute for Water Research and The Authors.Integrated Environmental Assessment and Managementpublished by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. 
    more » « less
  5. null (Ed.)
    Future air quality will be driven by changes in air pollutant emissions, but also changes in climate. Here, we review the recent literature on future air quality scenarios and projected changes in effects on human health, crops and ecosystems. While there is overlap in the scenarios and models used for future projections of air quality and climate effects on human health and crops, similar efforts have not been widely conducted for ecosystems. Few studies have conducted joint assessments across more than one sector. Improvements in future air quality effects on human health are seen in emission reduction scenarios that are more ambitious than current legislation. Larger impacts result from changing particulate matter (PM) abundances than ozone burdens. Future global health burdens are dominated by changes in the Asian region. Expected future reductions in ozone outside of Asia will allow for increased crop production. Reductions in PM, although associated with much higher uncertainty, could offset some of this benefit. The responses of ecosystems to air pollution and climate change are long-term, complex, and interactive, and vary widely across biomes and over space and time. Air quality and climate policy should be linked or at least considered holistically, and managed as a multi-media problem. This article is part of a discussion meeting issue ‘Air quality, past present and future’. 
    more » « less