skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 7, 2026

Title: Quantifying Metrics for Wildfire Ignition Risk from Geographic Data in Power Shutoff Decision-Making
Faults on power lines and other electric equipment are known to cause wildfire ignitions. To mitigate the threat of wildfire ignitions from electric power infrastructure, many utilities preemptively de-energize power lines, which may result in power shutoffs. Data regarding wildfire ignition risks are key inputs for effective planning of power line de-energizations. However, there are multiple ways to formulate risk metrics that spatially aggregate wildfire risk map data, and there are different ways of leveraging this data to make decisions. The key contribution of this paper is to define and compare the results of employing six metrics for quantifying the wildfire ignition risks of power lines from risk maps, considering both threshold- and optimization-based methods for planning power line de-energizations. The numeric results use the California Test System (CATS), a large-scale synthetic grid model with power line corridors accurately representing California infrastructure, in combination with real Wildland Fire Potential Index data for a full year. This is the first application of optimal power shutoff planning on such a large and realistic test case. Our results show that the choice of risk metric significantly impacts the lines that are de-energized and the resulting load shed. We find that the optimization-based method results in significantly less load shed than the threshold-based method while achieving the same risk reduction.  more » « less
Award ID(s):
2045860
PAR ID:
10574598
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
University of Hawaii
Date Published:
Format(s):
Medium: X
Location:
Hawaii
Sponsoring Org:
National Science Foundation
More Like this
  1. Wildfires pose a growing risk to public safety in regions like the western United States, and, historically, electric power systems have ignited some of the most destructive wildfires. To reduce wildfire ignition risks, power system operators preemptively de-energize high-risk power lines during extreme wildfire conditions as part of "Public Safety Power Shutoff" (PSPS) events. While capable of substantially reducing acute wildfire risks, PSPS events can also result in significant amounts of load shedding as the partially de-energized system may not be able to supply all customer demands. In this work, we investigate the extent to which infrastructure investments can support system operations during PSPS events by enabling reduced load shedding and wildfire ignition risk. We consider the installation of grid-scale batteries, solar PV, and line hardening or maintenance measures (e.g., undergrounding or increased vegetation management). Optimally selecting the locations, types, and sizes of these infrastructure investments requires considering the line de-energizations associated with PSPS events. Accordingly, this paper proposes a multi-period optimization formulation that locates and sizes infrastructure investments while simultaneously choosing line de-energizations to minimize wildfire ignition risk and load shedding. The proposed formulation is evaluated using two geolocated test cases along with realistic infrastructure investment parameters and actual wildfire risk data from the US Geological Survey. We evaluate the performance of investment choices by simulating de-energization decisions for the entire 2021 wildfire season with optimized infrastructure placements. With investment decisions varying significantly for different test cases, budgets, and operator priorities, the numerical results demonstrate the proposed formulation's value in tailoring investment choices to different settings. 
    more » « less
  2. Electric power infrastructure has ignited several of the most destructive wildfires in recent history. Preemptive power shutoffs are an effective tool to mitigate the risk of ignitions from power lines, but at the same time can cause widespread power outages. This work proposes a mathematical optimization problem to help utilities decide where and when to implement these shutoffs, as well as how to most efficiently restore power once the wildfire risk is lower. Specifically, our model co-optimizes the power shutoff (considering both wildfire risk reduction and power outages) as well as the post-event restoration efforts given constraints related to inspection and energization of lines, and is implemented as a rolling horizon optimization problem that is resolved whenever new forecasts of load and wildfire risk become available. We demonstrate our method on the IEEE RTS-GMLC test case using real wildfire risk data and forecasts from US Geological Survey, and investigate the sensitivity of the results to the forecast quality, decision horizon and system restoration budget. The software implementation is available in the open source software package PowerModels Wildfire.jl. 
    more » « less
  3. Each year, wildfires ravage the western U.S. and change the lives of millions of inhabitants. Situated in southern California, coastal Santa Barbara has witnessed devastating wildfires in the past decade, with nearly all ignitions started by humans. Therefore, estimating the risk imposed by unplanned ignitions in this fire-prone region will further increase resilience toward wildfires. Currently, a fire-risk map does not exist in this region. The main objective of this study is to provide a spatial analysis of regions at high risk of fast wildfire spread, particularly in the first two hours, considering varying scenarios of ignition locations and atmospheric conditions. To achieve this goal, multiple wildfire simulations were conducted using the FARSITE fire spread model with three ignition modeling methods and three wind scenarios. The first ignition method considers ignitions randomly distributed in 500 m buffers around previously observed ignition sites. Since these ignitions are mainly clustered around roads and trails, the second method considers a 50 m buffer around this built infrastructure, with ignition points randomly sampled from within this buffer. The third method assumes a Euclidean distance decay of ignition probability around roads and trails up to 1000 m, where the probability of selection linearly decreases further from the transportation paths. The ignition modeling methods were then employed in wildfire simulations with varying wind scenarios representing the climatological wind pattern and strong, downslope wind events. A large number of modeled ignitions were located near the major-exit highway running north–south (HWY 154), resulting in more simulated wildfires burning in that region. This could impact evacuation route planning and resource allocation under climatological wind conditions. The simulated fire areas were smaller, and the wildfires did not spread far from the ignition locations. In contrast, wildfires ignited during strong, northerly winds quickly spread into the wildland–urban interface (WUI) toward suburban and urban areas. 
    more » « less
  4. Public Safety Power Shutoffs (PSPS) are a critical yet disruptive wildfire mitigation strategy used by electric utilities to reduce ignition risk during periods of elevated fire danger. However, current PSPS decisions often lack transparency and consistency, prompting the need for data-driven tools to better understand utility behavior. This paper presents a Support Vector Machine (SVM) framework to model and interpret PSPS decision-making using post-event wildfire reports. Forecast-based weather and fire behavior features are used as model inputs to represent decision-relevant variables reported by utilities. The model is calibrated using Platt scaling for probabilistic interpretability and adapted across utilities using importance- weighted domain adaptation to address feature distribution shifts. A post-hoc clustering segments PSPS events into wildfire risk zones based on ignition risk metrics excluded from model train- ing. Results demonstrate that the proposed framework supports interpretable, transferable analysis of PSPS decisions, offering insight into utility practices and informing more transparent de- energization planning. 
    more » « less
  5. The Optimal Power Shutoff (OPS) problem is an optimization problem that makes power line de-energization decisions in order to reduce the risk of igniting a wildfire, while minimizing the load shed of customers. This problem, with DC linear power flow equations, has been used in many studies in recent years. However, using linear approximations for power flow when making decisions on the network topology is known to cause challenges with AC feasibility of the resulting network, as studied in the related contexts of optimal transmission switching or grid restoration planning. This paper explores the accuracy of the DC OPS formulation and the ability to recover an AC-feasible power flow solution after de-energization decisions are made. We also extend the OPS problem to include variants with the AC, Second-Order-Cone, and Network-Flow power flow equations, and compare them to the DC approximation with respect to solution quality and time. The results highlight that the DC approximation overestimates the amount of load that can be served, leading to poor de-energization decisions. The AC and SOC-based formulations are better, but prohibitively slow to solve for even modestly sized networks thus demonstrating the need for new solution methods with better trade-offs between computational time and solution quality. 
    more » « less