skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2045860

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Faults on power lines and other electric equipment are known to cause wildfire ignitions. To mitigate the threat of wildfire ignitions from electric power infrastructure, many utilities preemptively de-energize power lines, which may result in power shutoffs. Data regarding wildfire ignition risks are key inputs for effective planning of power line de-energizations. However, there are multiple ways to formulate risk metrics that spatially aggregate wildfire risk map data, and there are different ways of leveraging this data to make decisions. The key contribution of this paper is to define and compare the results of employing six metrics for quantifying the wildfire ignition risks of power lines from risk maps, considering both threshold- and optimization-based methods for planning power line de-energizations. The numeric results use the California Test System (CATS), a large-scale synthetic grid model with power line corridors accurately representing California infrastructure, in combination with real Wildland Fire Potential Index data for a full year. This is the first application of optimal power shutoff planning on such a large and realistic test case. Our results show that the choice of risk metric significantly impacts the lines that are de-energized and the resulting load shed. We find that the optimization-based method results in significantly less load shed than the threshold-based method while achieving the same risk reduction. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  2. The rapid expansion of distributed energy resources is heightening uncertainty and variability in distribution system operations, potentially leading to power quality challenges such as voltage magnitude violations and excessive voltage unbalance. Ensuring the dependable and secure operation of distribution grids requires system real-time assessment. However, constraints in sensing, measurement, and communication capabilities within distribution grids result in limited awareness of the system’s state. To achieve better real-time estimates of distribution system security, we propose a real-time security assessment based on data from smart meters, which are already prevalent in most distribution grids. Assuming that it is possible to obtain a limited number of voltage magnitude measurements in real time, we design an iterative algorithm to adaptively identify a subset of smart meters whose real-time measurements allow us to certify that all voltage magnitudes remain within bounds. This algorithm iterates between (i) solving optimization problems to determine the worst possible voltage magnitudes, given a limited set of voltage magnitude measurements, and (ii) leveraging the solutions and sensitivity information from these problems to update the measurement set. Numerical tests on the IEEE 123 bus distribution feeder demonstrate that the proposed algorithm consistently identifies and tracks the nodes with the highest and lowest voltage magnitude, even as the load changes over time. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  3. With increasing energy prices, low income households are known to forego or minimize the use of electricity to save on energy costs. If a household is on a prepaid electricity program, it can be automatically and immediately disconnected from service if there is no balance in its prepaid account. Such households need to actively ration the amount of energy they use by deciding which appliances to use and for how long. We present a tool that helps households extend the availability of their critical appliances by limiting the use of discretionary ones, and prevent disconnections. The proposed method is based on a linear optimization problem that only uses average power demand as an input and can be solved to optimality using a simple greedy approach. We compare the model with two mixed-integer linear programming models that require more detailed demand forecasts and optimization solvers for implementation. In a numerical case study based on real household data, we assess the performance of the different models under different accuracy and granularity of demand forecasts. Our results show that our proposed linear model is much simpler to implement, while providing similar performance under realistic circumstances 
    more » « less
  4. The Optimal Power Shutoff (OPS) problem is an optimization problem that makes power line de-energization decisions in order to reduce the risk of igniting a wildfire, while minimizing the load shed of customers. This problem, with DC linear power flow equations, has been used in many studies in recent years. However, using linear approximations for power flow when making decisions on the network topology is known to cause challenges with AC feasibility of the resulting network, as studied in the related contexts of optimal transmission switching or grid restoration planning. This paper explores the accuracy of the DC OPS formulation and the ability to recover an AC-feasible power flow solution after de-energization decisions are made. We also extend the OPS problem to include variants with the AC, Second-Order-Cone, and Network-Flow power flow equations, and compare them to the DC approximation with respect to solution quality and time. The results highlight that the DC approximation overestimates the amount of load that can be served, leading to poor de-energization decisions. The AC and SOC-based formulations are better, but prohibitively slow to solve for even modestly sized networks thus demonstrating the need for new solution methods with better trade-offs between computational time and solution quality. 
    more » « less
  5. The frequency of wildfire disasters has surged fivefold in the past 50 years due to climate change. Preemptive de-energization is a potent strategy to mitigate wildfire risks but substantially impacts customers. We propose a multistage stochastic programming model for proactive de-energization planning, aiming to minimize economic loss while accomplishing a fair load delivery. We model wildfire disruptions as stochastic disruptions with varying timing and intensity, introduce a cutting-plane decomposition algorithm, and test our approach on the RTS-GLMC test case. Our model consistently offers a robust and fair de-energization plan that mitigates wildfire damage costs and minimizes load-shedding losses, particularly when pre-disruption restoration is considered. 
    more » « less