The erosion and transport of cohesive sediment are more difficult to study than non-cohesive sediment, largely because these processes vary with the salt in the water. Clay minerals are the major components that contribute to the cohesiveness of cohesive sediment because they have significantly larger surface charges and surface area-to-volume ratio than non-cohesive sediment. The electrochemically active clay surfaces can adsorb ions on their surfaces, form an electrical double layer, and cause clay particles to aggregate or form a gel. In this chapter, we first discuss the properties of clay minerals, including the structure of clay primary particles, their surface charge and area, and their interaction with ions in water. The surface charges and surface areas of clay are several orders of magnitude larger than non-cohesive sand, thus predisposing it to interactions with salt in aqueous environments. Second, we summarize studies that reveal the role of salts, specifically salinity and sodium absorption ratio (SAR), on sediment aggregation, stability, and settling speed. An increase in salinity from 0.15 to 1.5 ppt has been shown to increase the erosion threshold of smectite clay by more than 10 times. These findings underscore the crucial role of salt in shaping cohesive sediment transport.
more »
« less
This content will become publicly available on April 1, 2026
A coarse-grained model of clay colloidal aggregation and consolidation with explicit representation of the electrical double layer
Knowledge Gap: The aggregation of clay minerals in liquid water exemplifies colloidal self-assembly in nature. These negatively charged aluminosilicate platelets interact through multiple mechanisms with different sensitivities to particle shape, surface charge, aqueous chemistry, and interparticle distance and exhibit complex aggregation structures. Experiments have difficulty resolving the associated colloidal assemblages at the scale of individual particles. Conversely, all-atom molecular dynamics (MD) simulations provide detailed insight on clay colloidal interaction mechanisms, but they are limited to systems containing a few particles. Simulations: We develop a new coarse-grained (CG) model capable of representing assemblages of hundreds of clay particles with accuracy approaching that of MD simulations, at a fraction of the computational cost. Our CG model is parameterized based on MD simulations of a pair of smectite clay particles in liquid water. A distinctive feature of our model is that it explicitly represents the electrical double layer (EDL), i.e., the cloud of charge-compensating cations that surrounds the clay particles. Findings: Our model captures the simultaneous importance of long-range colloidal interactions (i.e., interactions consistent with simplified analytical models, already included in extant clay CG models) and short-range interactions such as ion correlation and surface and ion hydration effects. The resulting simulations correctly predict, at low solid-water ratios, the existence of ordered arrangements of parallel particles separated by water films with a thickness up to ~10 nm and, at high solid-water ratios, the coexistence of crystalline and osmotic swelling states, in agreement with experimental observations.
more »
« less
- Award ID(s):
- 2150797
- PAR ID:
- 10574695
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Colloid and Interface Science
- Volume:
- 683
- ISSN:
- 0021-9797
- Page Range / eLocation ID:
- 1188-1196
- Subject(s) / Keyword(s):
- Molecular dynamics simulation DLVO theory clay swelling disjoining pressure adsorption electrical double layer colloid aggregation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary The mechanical and hydraulic properties of unsaturated clay under nonisothermal conditions have practical implications in geotechnical engineering applications such as geothermal energy harvest, landfill cover design, and nuclear waste disposal facilities. The water menisci among clay particles impact the mechanical and hydraulic properties of unsaturated clay. Molecular dynamics (MD) modeling has been proven to be an effective method in investigating clay structures and their hydromechanical behavior at the atomic scale. In this study, we examine the impact of temperature increase on the capillary force and capillary pressure of the partially saturated clay‐water system through high‐performance computing. The water meniscus formed between two parallel clay particles is studied via a full‐scale MD modeling at different elevated temperatures. The numerical results have shown that the temperature increase impacts the capillary force, capillary pressure, and contact angle at the atomic scale. The capillary force on the clay particle obtained from MD simulations is also compared with the results from the macroscopic theory. The full‐scale MD simulation of the partially saturated clay‐water system can not only provide a fundamental understanding of the impact of temperature on the interface physics of such system at the atomic scale, but also has practical implication in formulating physics‐based multiscale models for unsaturated soils by providing interface physical properties of such materials directly through high‐performance computing.more » « less
-
Nanoclay–polymer shear-thinning composites are designed for a broad range of biomedical applications, including tissue engineering, drug delivery, and additive biomanufacturing. Despite the advances in clay–polymer injectable nanocomposites, colloidal properties of layered silicates are not fully considered in evaluating the in vitro performance of shear-thinning biomaterials (STBs). Here, as a model system, we investigate the effect of ions on the rheological properties and injectability of nanoclay–gelatin hydrogels to understand their behavior when prepared in physiological media. In particular, we study the effect of sodium chloride (NaCl) and calcium chloride (CaCl 2 ), common salts in phosphate buffered saline (PBS) and cell culture media ( e.g. , Dulbecco's Modified Eagle's Medium, DMEM), on the structural organization of nanoclay (LAPONITE® XLG-XR, a hydrous lithium magnesium sodium silicate)-polymer composites, responsible for the shear-thinning properties and injectability of STBs. We show that the formation of nanoclay–polymer aggregates due to the ion-induced shrinkage of the diffuse double layer and eventually the liquid–solid phase separation decrease the resistance of STB against elastic deformation, decreasing the yield stress. Accordingly, the stress corresponding to the onset of structural breakdown (yield zone) is regulated by the ion type and concentration. These results are independent of the STB composition and can directly be translated into the physiological conditions. The exfoliated nanoclay undergoes visually undetectable aggregation upon mixing with gelatin in physiological media, resulting in heterogeneous hydrogels that phase separate under stress. This work provides fundamental insights into nanoclay–polymer interactions in physiological environments, paving the way for designing clay-based injectable biomaterials.more » « less
-
Semiconductor nanocrystals (NCs) can function as efficient gain materials with chemical versatility because of their surface ligands. Because the properties of NCs in solution are sensitive to ligand–environment interactions, local chemical changes can result in changes in the optical response. However, amplification of the optical response is technically challenging because of colloidal instability at NC concentrations needed for sufficient gain to overcome losses. This paper demonstrates liquid lasing from plasmonic lattice cavities integrated with ligand-engineered CdZnS/ZnS NCs dispersed in toluene and water. By taking advantage of calcium ion-induced aggregation of NCs in aqueous solutions, we show how lasing threshold can be used as a transduction signal for ion detection. Our work highlights how NC solutions and plasmonic lattices with open cavity architectures can serve as a biosensing platform for lab-on-chip devices.more » « less
-
Charge-stabilized colloidal suspensions display a rich variety of microstructural and thermodynamic properties, which are determined by electro-steric interactions between all ionic species. The large size asymmetry between molecular-scale microions and colloidal macroions allows the microion degrees of freedom to be integrated out, leading to an effective one-component model of microion-dressed colloidal quasi-particles. For highly charged colloids with strong macroion–microion correlations, nonlinear effects can be incorporated into effective interactions by means of charge renormalization methods. Here, we compare and partially extend several practical mean-field methods of calculating renormalized colloidal interaction parameters, including effective charges and screening constants, as functions of concentration and ionic strength. Within the one-component description, we compute structural and thermodynamic properties from the effective interactions and assess the accuracy of the different methods by comparing predictions with elaborate primitive-model simulations [P. Linse, J. Chem. Phys. 113, 4359 (2000)]. We also compare various prescriptions for the osmotic pressure of suspensions in Donnan equilibrium with a salt ion reservoir and analyze instances where the macroion effective charge becomes larger than the bare one. The methods assessed include single-center cell, jellium, and multi-center mean-field theories. The strengths and weaknesses of the various methods are critically assessed, with the aim of guiding optimal and accurate implementations.more » « less
An official website of the United States government
