skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical Mixing Suppresses Submesoscale Baroclinic Instabilities Over Sloping Bathymetry
Abstract The impacts of spurious numerical salinity mixing on the larger‐scale flow and tracer fields are characterized using idealized simulations. The idealized model is motivated by realistic simulations of the Texas‐Louisiana shelf and features oscillatory near‐inertial wind forcing. can exceed the physical mixing from the turbulence closure in frontal zones and within the mixed layer. This suggests that simulated mixing processes in frontal zones are driven largely by . Near‐inertial alongshore wind stress amplitude is varied to identify a base case that maximizes the ratio of to in simulations with no prescribed horizontal mixing. We then test the sensitivity of the base case with three tracer advection schemes (MPDATA, U3HC4, and HSIMT) and conduct ensemble runs with perturbed bathymetry. Instability growth is evaluated using the volume‐integrated eddy kinetic energy and available potential energy . While all schemes have similar total mixing, the HSIMT simulations have over double the volume‐integrated and 20% less relative to other schemes, which suppresses the release of and reduces the by roughly 25%. This results in reduced isohaline variability and steeper isopycnals, evidence that enhanced suppresses instability growth. Differences in and between the MPDATA and U3HC4 simulations are marginal. However, the U3HC4 simulations have 25% more . Experiments with variable horizontal viscosity and diffusivity coefficients show that small amounts of prescribed horizontal mixing improve the representation of the ocean state for all advection schemes by reducing the and increasing the .  more » « less
Award ID(s):
2219852 1851470
PAR ID:
10574764
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
16
Issue:
12
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work explores the influence of Weighted Essentially Non-Oscillatory (WENO) schemes on Cloud Model 1 (CM1) large-eddy simulations (LES) of a quasi-steady, horizontally homogeneous, fully developed, neutral atmospheric boundary layer (ABL). An advantage of applying WENO schemes to scalar advection in compressible models is the elimination of acoustic waves and associated oscillations of domain-total vertical velocity. Applying WENO schemes to momentum advection in addition to scalar advection yields no further advantage, but has an adverse effect on resolved turbulence within LES. As a tool designed to reduce numerically generated spurious oscillations, WENO schemes also suppress physically realistic instability development in turbulence-resolving simulations. Thus, applying WENO schemes to momentum advection reduces vortex stretching, suppresses the energy cascade, reduces shear-production of resolved Reynolds stress, and eventually amplifies the differences between the surface-layer mean wind profiles in the LES and the mean wind profiles expected in accordance with the filtered law of the wall (LOTW). The role of WENO schemes in adversely influencing surface-layer turbulence has inspired a concept of anti-WENO (AWENO) schemes to enhance instability development in regions where energy-containing turbulent motions are inadequately resolved by LES grids. The success in reproducing the filtered LOTW via AWENO schemes suggests that improving advection schemes is a critical component toward faithfully simulating near-surface turbulence and dealing with other "Terra Incognita" problems. 
    more » « less
  2. In Part 1 (Wienkers, Thomas & Taylor,J. Fluid Mech., vol. 926, 2021, A6), we described the theory for linear growth and weakly nonlinear saturation of symmetric instability (SI) in the Eady model representing a broad frontal zone. There, we found that both the fraction of the balanced thermal wind mixed down by SI and the primary source of energy are strongly dependent on the front strength, defined as the ratio of the horizontal buoyancy gradient to the square of the Coriolis frequency. Strong fronts with steep isopycnals develop a flavour of SI we call ‘slantwise inertial instability’ by extracting kinetic energy from the background flow and rapidly mixing down the thermal wind profile. In contrast, weak fronts extract more potential energy from the background density profile, which results in ‘slantwise convection.’ Here, we extend the theory from Part 1 using nonlinear numerical simulations to focus on the adjustment of the front following saturation of SI. We find that the details of adjustment and amplitude of the induced inertial oscillations depend on the front strength. While weak fronts develop narrow frontlets and excite small-amplitude vertically sheared inertial oscillations, stronger fronts generate large inertial oscillations and produce bore-like gravity currents that propagate along the top and bottom boundaries. The turbulent dissipation rate in these strong fronts is large, highly intermittent and intensifies during periods of weak stratification. We describe each of these mechanisms and energy pathways as the front evolves towards the final adjusted state, and in particular focus on the effect of varying the dimensionless front strength. 
    more » « less
  3. null (Ed.)
    Abstract Large-eddy simulations are used to investigate the influence of a horizontal frontal zone, represented by a stationary uniform background horizontal temperature gradient, on the wind- and wave-driven ocean surface boundary layers. In a frontal zone, the temperature structure, the ageostrophic mean horizontal current, and the turbulence in the ocean surface boundary layer all change with the relative angle among the wind and the front. The net heating and cooling of the boundary layer could be explained by the depth-integrated horizontal advective buoyancy flux, called the Ekman Buoyancy Flux (or the Ekman-Stokes Buoyancy Flux if wave effects are included). However, the detailed temperature profiles are also modulated by the depth-dependent advective buoyancy flux and submesoscale eddies. The surface current is deflected less (more) to the right of the wind and wave when the depth-integrated advective buoyancy flux cools (warms) the ocean surface boundary layer. Horizontal mixing is greatly enhanced by submesoscale eddies. The eddy-induced horizontal mixing is anisotropic and is stronger to the right of the wind direction. Vertical turbulent mixing depends on the superposition of the geostrophic and ageostrophic current, the depth-dependent advective buoyancy flux, and submesoscale eddies. 
    more » « less
  4. This study addresses the horizontal and vertical dispersion of passive tracers in idealized wind-driven subtropical gyres. Synthetic particles within a closed basin are numerically advected to analyze their dispersion under different theoretical velocity fields. Horizontal dispersion simulations incorporate the classic wind-driven Stommel circulation along with (i) surface Ekman drift associated with the Stommel wind field and (ii) inertial effects due to particle size and buoyancy. Results reveal that the Ekman drift inhibits particle dispersion across the entire domain leading to tracer concentration in a quasi-stable distribution skewed toward the western side of the basin. Similar behavior is observed with inertial particles. The equilibrium state is quantified for different diffusivity values, particle sizes, and buoyancies. For vertical dispersion, simulations incorporate the three-dimensional Ekman velocity, which includes a negative vertical component, while ignoring inertial effects. Initially, surface particles accumulate around the gyre center while slowly sinking, but they disperse across the basin once they surpass the Ekman layer and are free from surface effects. Tracers sink more on the western side of the basin, regardless of horizontal diffusivity. On average, ignoring inertial effects, particles sink less with higher diffusivity and more with lower diffusivity, suggesting a potential for high horizontal distribution of sunken tracers in the ocean. 
    more » « less
  5. The dynamics of eyewall contraction of tropical cyclones (TCs) has been revisited in this study based on both three-dimensional and axisymmetric simulations and dynamical diagnostics. Because eyewall contraction is closely related to the contraction of the radius of maximum wind (RMW), its dynamics is thus often studied by examining the RMW tendency in previous studies. Recently, Kieu and Stern et al. proposed two different frameworks to diagnose the RMW tendency but had different conclusions. In this study, the two frameworks are evaluated first based on theoretical analysis and idealized numerical simulations. It is shown that the framework of Kieu is a special case of the earlier framework of Willoughby et al. if the directional derivative is applied. An extension of Stern et al.’s approach not only can reproduce but also can predict the RMW tendency. A budget of the azimuthal-mean tangential wind tendency indicates that the contributions by radial and vertical advections to the RMW tendency vary with height. Namely, radial advection dominates the RMW contraction in the lower boundary layer, and vertical advection favors the RMW contraction in the upper boundary layer and lower troposphere. In addition to the curvature, the increase of the radial gradient of horizontal mixing (including the resolved eddy mixing in three dimensions) near the eyewall prohibits eyewall contraction in the lower boundary layer. Besides, the vertical mixing including surface friction also plays an important role in the cessation of eyewall contraction in the lower boundary layer. 
    more » « less