skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iron nutrition and COVID-19 among Nigerian healthcare workers
Abstract Background and objectivesThe optimal iron hypothesis (OIH) posits that risk for infection is lowest at a mild level of iron deficiency. The extent to which this protection results from arms race dynamics in the evolution of iron acquisition and sequestration mechanisms is unclear. We evaluated the OIH with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging infectious agent. MethodologyWe tested 304 healthcare workers at baseline for iron deficiency (zinc protoporphyrin:heme), anemia (hemoglobin), and SARS-CoV-2 (salivary PCR), and followed them for ~3 months with biweekly SARS-CoV-2 tests. We fit logistic regression models based on Akaike Information Criterion. ResultsAdequate data were available for 199 participants. Iron replete (OR: 2.87, 95% CI: 0.85, 9.75) and anemia (OR: 2.48; 95% CI: 0.82, 7.85) were associated with higher risk for SARS-CoV-2 infection after control for covariates. Logistic regression and Cox proportional hazards models of the SARS-CoV-2 outcome were similar. Anemia (OR: 1.81; 95% CI: 0.88, 3.71) was associated with respiratory symptoms regardless of SARS-CoV-2 infection. Conclusions and implicationsThese findings provide partial support for the OIH: SARS-CoV-2 infection risk was elevated at the high end of the range of iron availability; however, the elevated risk among those with anemia was not, as expected, specific to severe iron deficiency. Narrowly, for COVID-19 epidemiology, these findings accord with evidence that SARS-CoV-2’s ability to establish infection is enhanced by access to iron. More broadly, these findings suggest that the OIH does not hinge on a long history of evolutionary arms race dynamics in access to host iron.  more » « less
Award ID(s):
1825534
PAR ID:
10574794
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution, Medicine, and Public Health
Volume:
12
Issue:
1
ISSN:
2050-6201
Page Range / eLocation ID:
287 to 297
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has spread globally. However, the contribution of community versus household transmission to the overall risk of infection remains unclear. MethodsBetween November 2021 and March 2022, we conducted an active case-finding study in an urban informal settlement with biweekly visits across 1174 households with 3364 residents. Individuals displaying coronavirus disease 2019 (COVID-19)–related symptoms were identified, interviewed along with household contacts, and defined as index and secondary cases based on reverse-transcription polymerase chain reaction (RT-PCR) and symptom onset. ResultsIn 61 households, we detected a total of 94 RT-PCR–positive cases. Of 69 sequenced samples, 67 cases (97.1%) were attributed to the Omicron BA.1* variant. Among 35 of their households, the secondary attack rate was 50.0% (95% confidence interval [CI], 37.0%–63.0%). Women (relative risk [RR], 1.6 [95% CI, .9–2.7]), older individuals (median difference, 15 [95% CI, 2–21] years), and those reporting symptoms (RR, 1.73 [95% CI, 1.0–3.0]) had a significantly increased risk for SARS-CoV-2 secondary infection. Genomic analysis revealed substantial acquisition of viruses from the community even among households with other SARS-CoV-2 infections. After excluding community acquisition, we estimated a household secondary attack rate of 24.2% (95% CI, 11.9%–40.9%). ConclusionsThese findings underscore the ongoing risk of community acquisition of SARS-CoV-2 among households with current infections. The observed high attack rate necessitates swift booster vaccination, rapid testing availability, and therapeutic options to mitigate the severe outcomes of COVID-19. 
    more » « less
  2. Abstract Some reproductive-aged individuals remain unvaccinated against coronavirus disease 2019 (COVID-19) because of concerns about potential adverse effects on fertility. Using data from an internet-based preconception cohort study, we examined the associations of COVID-19 vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with fertility among couples trying to conceive spontaneously. We enrolled 2,126 self-identified female participants aged 21–45 year residing in the United States or Canada during December 2020–September 2021 and followed them through November 2021. Participants completed questionnaires every 8 weeks on sociodemographics, lifestyle, medical factors, and partner information. We fit proportional probabilities regression models to estimate associations between self-reported COVID-19 vaccination and SARS-CoV-2 infection in both partners with fecundability (i.e., the per-cycle probability of conception), adjusting for potential confounders. COVID-19 vaccination was not appreciably associated with fecundability in either partner (female fecundability ratio (FR) = 1.08, 95% confidence interval (CI): 0.95, 1.23; male FR = 0.95, 95% CI: 0.83, 1.10). Female SARS-CoV-2 infection was not strongly associated with fecundability (FR = 1.07, 95% CI: 0.87, 1.31). Male infection was associated with a transient reduction in fecundability (for infection within 60 days, FR = 0.82, 95% CI: 0.47, 1.45; for infection after 60 days, FR = 1.16, 95% CI: 0.92, 1.47). These findings indicate that male SARS-CoV-2 infection may be associated with a short-term decline in fertility and that COVID-19 vaccination does not impair fertility in either partner. 
    more » « less
  3. null (Ed.)
    Abstract Among 353 healthcare personnel in a longitudinal cohort in 4 hospitals in Atlanta, Georgia (May–June 2020), 23 (6.5%) had severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies. Spending >50% of a typical shift at the bedside (OR, 3.4; 95% CI, 1.2–10.5) and black race (OR, 8.4; 95% CI, 2.7–27.4) were associated with SARS-CoV-2 seropositivity. 
    more » « less
  4. Background: Nursing home (NH) residents and staff were at high risk for COVID-19 early in the pandemic; several studies estimated seroprevalence of infection in NH staff to be 3-fold higher among CNAs and nurses compared to other staff. Risk mitigation added in Fall 2020 included systematic testing of residents and staff (and furlough if positive) to reduce transmission risk. We estimated risks for SARS-CoV-2 infection among NH staff during the first winter surge before widespread vaccination. Methods: Between February and May 2021, voluntary serologic testing was performed on NH staff who were seronegative for SARS-CoV-2 in late Fall 2020 (during a previous serology study at 14 Georgia NHs). An exposure assessment at the second time point covered prior 3 months of job activities, community exposures, and self-reported COVID-19 vaccination, including very recent vaccination (≤4 weeks). Risk factors for seroconversion were estimated by job type using multivariable logistic regression, accounting for interval community-incidence and interval change in resident infections per bed. Results: Among 203 eligible staff, 72 (35.5%) had evidence of interval seroconversion (Fig. 1). Among 80 unvaccinated staff, interval infection was significantly higher among CNAs and nurses (aOR, 4.9; 95% CI, 1.4–20.7) than other staff, after adjusting for race and interval community incidence and facility infections. This risk persisted but was attenuated when utilizing the full study cohort including those with very recent vaccination (aOR, 1.8; 95% CI, 0.9–3.7). Conclusions : Midway through the first year of the pandemic, NH staff with close or common resident contact continued to be at increased risk for infection despite enhanced infection prevention efforts. Mitigation strategies, prior to vaccination, did not eliminate occupational risk for infection. Vaccine utilization is critical to eliminate occupational risk among frontline healthcare providers. Funding: None Disclosures: None 
    more » « less
  5. ImportanceTrust in physicians and hospitals has been associated with achieving public health goals, but the increasing politicization of public health policies during the COVID-19 pandemic may have adversely affected such trust. ObjectiveTo characterize changes in US adults’ trust in physicians and hospitals over the course of the COVID-19 pandemic and the association between this trust and health-related behaviors. Design, Setting, and ParticipantsThis survey study uses data from 24 waves of a nonprobability internet survey conducted between April 1, 2020, and January 31, 2024, among 443 455 unique respondents aged 18 years or older residing in the US, with state-level representative quotas for race and ethnicity, age, and gender. Main Outcome and MeasureSelf-report of trust in physicians and hospitals; self-report of SARS-CoV-2 and influenza vaccination and booster status. Survey-weighted regression models were applied to examine associations between sociodemographic features and trust and between trust and health behaviors. ResultsThe combined data included 582 634 responses across 24 survey waves, reflecting 443 455 unique respondents. The unweighted mean (SD) age was 43.3 (16.6) years; 288 186 respondents (65.0%) reported female gender; 21 957 (5.0%) identified as Asian American, 49 428 (11.1%) as Black, 38 423 (8.7%) as Hispanic, 3138 (0.7%) as Native American, 5598 (1.3%) as Pacific Islander, 315 278 (71.1%) as White, and 9633 (2.2%) as other race and ethnicity (those who selected “Other” from a checklist). Overall, the proportion of adults reporting a lot of trust for physicians and hospitals decreased from 71.5% (95% CI, 70.7%-72.2%) in April 2020 to 40.1% (95% CI, 39.4%-40.7%) in January 2024. In regression models, features associated with lower trust as of spring and summer 2023 included being 25 to 64 years of age, female gender, lower educational level, lower income, Black race, and living in a rural setting. These associations persisted even after controlling for partisanship. In turn, greater trust was associated with greater likelihood of vaccination for SARS-CoV-2 (adjusted odds ratio [OR], 4.94; 95 CI, 4.21-5.80) or influenza (adjusted OR, 5.09; 95 CI, 3.93-6.59) and receiving a SARS-CoV-2 booster (adjusted OR, 3.62; 95 CI, 2.99-4.38). Conclusions and RelevanceThis survey study of US adults suggests that trust in physicians and hospitals decreased during the COVID-19 pandemic. As lower levels of trust were associated with lesser likelihood of pursuing vaccination, restoring trust may represent a public health imperative. 
    more » « less