Coordination between actin and microtubules is important for numerous cellular processes in diverse eukaryotes. In plants, tip-growing cells require actin for cell expansion and microtubules for orientation of cell expansion, but how the two cytoskeletons are linked is an open question. In tip-growing cells of the moss Physcomitrella patens , we show that an actin cluster near the cell apex dictates the direction of rapid cell expansion. Formation of this structure depends on the convergence of microtubules near the cell tip. We discovered that microtubule convergence requires class VIII myosin function, and actin is necessary for myosin VIII–mediated focusing of microtubules. The loss of myosin VIII function affects both networks, indicating functional connections among the three cytoskeletal components. Our data suggest that microtubules direct localization of formins, actin nucleation factors, that generate actin filaments further focusing microtubules, thereby establishing a positive feedback loop ensuring that actin polymerization and cell expansion occur at a defined site resulting in persistent polarized growth.
more »
« less
Effective and efficient cytoskeleton (actin and microtubules) fluorescence staining of adherent eukaryotic cells v2
Eukaryotic microbes, protists, are highly diverse organisms with complex cytoskeletal elements used for movement consisting mostly of actin-myosin and microtubules. In order to visualize the cytoskeletal elements researchers may take a microscopical approach based on immunocytochemistry. Presented here is an efficient and effective for staining and visualizing actin microfilaments stained with phalloidin, nuclei stained with Hoechst 33342, and microtubules labeled using an alpha tubulin antibody. This protocol was developed for amoeboid protists, but will likely work on other adherent eukaryotic cells. Protocol is adapted from the following citations.
more »
« less
- Award ID(s):
- 2100888
- PAR ID:
- 10574816
- Publisher / Repository:
- Springer Nature
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Protocols.io
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cytoskeleton morphology plays a key role in regulating cell mechanics. Particularly, cellular mechanical properties are directly regulated by the highly cross-linked and dynamic cytoskeletal structure of F-actin and microtubules presented in the cytoplasm. Although great efforts have been devoted to investigating the qualitative relation between the cellular cytoskeleton state and cell mechanical properties, comprehensive quantification results of how the states of F-actin and microtubules affect mechanical behavior are still lacking. In this study, the effect of both F-actin and microtubules morphology on cellular mechanical properties was quantified using atomic force microscope indentation experiments together with the proposed image recognition-based cytoskeleton quantification approach. Young’s modulus and diffusion coefficient of NIH/3T3 cells with different cytoskeleton states were quantified at different length scales. It was found that the living NIH/3T3 cells sense and adapt to the F-actin and microtubules states: both the cellular elasticity and poroelasticity are closely correlated to the depolymerization degree of F-actin and microtubules at all measured indentation depths. Moreover, the significance of the quantitative effects of F-actin and microtubules in affecting cellular mechanical behavior is depth-dependent.more » « less
-
ABSTRACT Cells employ cytoskeletal polymers to move, divide, and pass information inside and outside of the cell. Previous work on eukaryotic cytoskeletal elements such as actin, microtubules, and intermediate filaments investigating the mechanisms of polymerization have been critical to understand how cells control the assembly of the cytoskeleton. Most biophysical analyses have considered cooperative versus isodesmic modes of polymerization; this framework is useful for specifying functions of regulatory proteins that control nucleation and understanding how cells regulate elongation in time and space. The septins are considered a fourth component of the eukaryotic cytoskeleton, but they are poorly understood in many ways despite their conserved roles in membrane dynamics, cytokinesis, and cell shape, and in their links to a myriad of human diseases. Because septin function is intimately linked to their assembled state, we set out to investigate the mechanisms by which septin polymers elongate under different conditions. We used simulations,in vitroreconstitution of purified septin complexes, and quantitative microscopy to directly interrogate septin polymerization behaviors in solution and on synthetic lipid bilayers of different geometries. We first used reactive Brownian dynamics simulations to determine if the presence of a membrane induces cooperativity to septin polymerization. We then used fluorescence correlation spectroscopy (FCS) to assess septins’ ability to form filaments in solution at different salt conditions. Finally, we investigated septin membrane adsorption and polymerization on planar and curved supported lipid bilayers. Septins clearly show signs of salt-dependent cooperative assembly in solution, but cooperativity is limited by binding a membrane. Thus, septin assembly is dramatically influenced by extrinsic conditions and substrate properties and can show properties of both isodesmic and cooperative polymers. This versatility in assembly modes may explain the extensive array of assembly types, functions, and subcellular locations in which septins act. SIGNIFICANCEThe septin cytoskeleton plays conserved and essential roles in cell division, membrane remodeling, and intracellular signaling with links to varied human diseases. Unlike actin and microtubules, whose polymerization dynamics have been extensively characterized, the molecular details of septin polymerization remain poorly understood. Here, we investigate the mode of septin polymerization through the lens of isodesmic and cooperative polymer assembly models in solution, on planar and curved supported membranes, and under different ionic conditions. Our findings show that the mechanisms of septin assembly are highly sensitive to ionic conditions, membrane geometry, and protein concentrations. Notably, assembly can show either cooperative or isodesmic properties depending on context, thereby revealing unexpected plasticity.more » « less
-
Significance Studies of eukaryotic cell division have focused on the actomyosin ring, whose filaments of F-actin and myosin-II are hypothesized to generate the contractile force for ingression of the cleavage furrow. However, myosin-II has a very limited taxonomic distribution, whereas division by furrowing is much more widespread. We used the green algaChlamydomonas reinhardtiito investigate how a furrow can form without myosin-II and the potential roles of F-actin in this process. Although F-actin was associated with ingressing furrows, its complete removal only modestly delayed furrowing, suggesting that an actin-independent mechanism (possibly involving microtubules) drives furrow ingression. Such a mechanism presumably emerged early in eukaryotic evolution and may still underlie cell division in a diverse range of modern species.more » « less
-
The presence of atypical cytoskeletal dynamics, structures, and associated morphologies is a common theme uniting numerous diseases and developmental disorders. In particular, cytoskeletal dysregulation is a common cellular feature of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. While the numerous activators and inhibitors of dysregulation present complexities for characterizing these elements as byproducts or initiators of the disease state, it is increasingly clear that a better understanding of these anomalies is critical for advancing the state of knowledge and plan of therapeutic attack. In this review, we focus on the hallmarks of cytoskeletal dysregulation that are associated with cofilin-linked actin regulation, with a particular emphasis on the formation, monitoring, and inhibition of cofilin-actin rods. We also review actin-associated proteins other than cofilin with links to cytoskeleton-associated neurodegenerative processes, recognizing that cofilin-actin rods comprise one strand of a vast web of interactions that occur as a result of cytoskeletal dysregulation. Our aim is to present a current perspective on cytoskeletal dysregulation, connecting recent developments in our understanding with emerging strategies for biosensing and biomimicry that will help shape future directions of the field.more » « less
An official website of the United States government

