skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 29, 2025

Title: An explicitly magnetic modified embedded atom method formalism for coupled spin dynamics and molecular dynamics
Abstract In this paper, we augment the modified embedded atom method formalism to include magnetic spin–spin interactions for elements with a persistent magnetic moment. While previous spin coupling methods have been based on pair potentials, our Magnetic MEAM formalism, which we term MagMEAM, incorporates the many-body and angular effects of MEAM allowing for the strength of the magnetic interaction to vary with atomic environment. In particular, this allows potentials using this formalism to differentiate the magnetic interaction of different stable phases of magnetic elements such as the ferritic and austenitic phases of iron. This, in turn, allows for a more robust and realistic description of magnetism in polymorphic materials than was previously possible. The motivation for MagMEAM, including the insufficiency of magnetic pair potentials, is presented and the structure of the formalism is developed. A sample iron potential is developed using this formalism and shown to exceed the capabilities of existing magnetic pair potentials by simultaneously reproducing the magnetic energy of both martensite and austenite as well as the dynamic mechanical and magnetic properties of martensite. This newly designed formalism will allow for deeper explorations in the the complex interaction between different phases of polymorphic magnetic materials at the molecular dynamics scale.  more » « less
Award ID(s):
2143610
PAR ID:
10574847
Author(s) / Creator(s):
;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Modelling and Simulation in Materials Science and Engineering
Volume:
33
Issue:
1
ISSN:
0965-0393
Page Range / eLocation ID:
015006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnonic holographic memory is a type of memory that uses spin waves for magnetic bit read-in and read-out. Its operation is based on the interaction between magnets and propagating spin waves where the phase and the amplitude of the spin wave are sensitive to the magnetic field produced by the magnet. Memory states 0 and 1 are associated with the presence/absence of the magnet in a specific location. In this work, we present experimental data showing the feasibility of magnetic bit location using spin waves. The testbed consists of four micro-antennas covered by Y 3 Fe 2 (FeO 4 ) 3 yttrium iron garnet (YIG) film. A constant in-plane bias magnetic field is provided by NdFeB permanent magnet. The magnetic bit is made of strips of magnetic steel to maximize interaction with propagating spin waves. In the first set of experiments, the position of the bit was concluded by the change produced in the transmittance between two antennas. The minima appear at different frequencies and show different depths for different positions of the bit. In the second set of experiments, two input spin waves were generated, where the phase difference between the waves is controlled by the phase shifter. The minima in the transmitted spectra appear at different phases for different positions of magnetic bit. The utilization of the structured bit enhances its interaction with propagating spin waves and improves recognition fidelity compared to a regular-shaped bit. The recognition accuracy is further improved by exploiting spin wave interference. The depth of the transmission minima corresponding to different magnet positions may exceed 30 dB. All experiments are accomplished at room temperature. Overall, the presented data demonstrate the practical feasibility of using spin waves for magnetic bit red-out. The practical challenges are also discussed. 
    more » « less
  2. Novel many-body and topological electronic phases can be created in assemblies of interacting spins coupled to a superconductor, such as one-dimensional topological superconductors with Majorana zero modes (MZMs) at their ends. Understanding and controlling interactions between spins and the emergent band structure of the in-gap Yu–Shiba–Rusinov (YSR) states they induce in a superconductor are fundamental for engineering such phases. Here, by precisely positioning magnetic adatoms with a scanning tunneling microscope (STM), we demonstrate both the tunability of exchange interaction between spins and precise control of the hybridization of YSR states they induce on the surface of a bismuth (Bi) thin film that is made superconducting with the proximity effect. In this platform, depending on the separation of spins, the interplay among Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction, spin–orbit coupling, and surface magnetic anisotropy stabilizes different types of spin alignments. Using high-resolution STM spectroscopy at millikelvin temperatures, we probe these spin alignments through monitoring the spin-induced YSR states and their energy splitting. Such measurements also reveal a quantum phase transition between the ground states with different electron number parity for a pair of spins in a superconductor tuned by their separation. Experiments on larger assemblies show that spin–spin interactions can be mediated in a superconductor over long distances. Our results show that controlling hybridization of the YSR states in this platform provides the possibility of engineering the band structure of such states for creating topological phases. 
    more » « less
  3. The discovery of atomic monolayer magnetic materials has stimulated intense research activities in the two-dimensional (2D) van der Waals (vdW) materials community. The field is growing rapidly and there has been a large class of 2D vdW magnetic compounds with unique properties, which provides an ideal platform to study magnetism in the atomically thin limit. In parallel, based on tunneling magnetoresistance and magneto-optical effect in 2D vdW magnets and their heterostructures, emerging concepts of spintronic and optoelectronic applications such as spin tunnel field-effect transistors and spin-filtering devices are explored. While the magnetic ground state has been extensively investigated, reliable characterization and control of spin dynamics play a crucial role in designing ultrafast spintronic devices. Ferromagnetic resonance (FMR) allows direct measurements of magnetic excitations, which provides insight into the key parameters of magnetic properties such as exchange interaction, magnetic anisotropy, gyromagnetic ratio, spin-orbit coupling, damping rate, and domain structure. In this review article, we present an overview of the essential progress in probing spin dynamics of 2D vdW magnets using FMR techniques. Given the dynamic nature of this field, we focus mainly on broadband FMR, optical FMR, and spin-torque FMR, and their applications in studying prototypical 2D vdW magnets. We conclude with the recent advances in laboratory- and synchrotron-based FMR techniques and their opportunities to broaden the horizon of research pathways into atomically thin magnets. 
    more » « less
  4. SUMMARY We expand the scope of HeFESTo by encompassing the rich physics of iron in the mantle, including the existence of multiple valence and spin states. In our previous papers, we considered iron only in its most common state in the mantle: the high-spin divalent (ferrous) cation. We now add ferric iron end-members to six phases, as well as the three phases of native iron. We also add low-spin states of ferrous and ferric iron and capture the behaviour of the high-spin to low-spin transition. Consideration of the multi-state nature of iron, unique among the major elements, leads to developments of our theory, including generalization of the chemical potential to account for the possibility of multiple distinguishable states of iron co-existing on a single crystallographic site, the effect of the high-spin to low-spin transition on seismic wave velocities in multiphase systems, and computation of oxygen fugacity. Consideration of ferric iron also motivates the addition of the chromia component to several phases, so that we now consider the set of components: Ca, Na, Fe, Mg, Al, Si, O and Cr (CNFMASO+Cr). We present the results of a new global inversion of mineral properties and compare our results to experimental observations over the entire pressure–temperature range of the mantle and over a wide range of oxygen fugacity. Applications of our method illustrate how it might be used to better understand the seismic structure, dynamics and oxygen fugacity of the mantle. 
    more » « less
  5. null (Ed.)
    We present a toolbox of microstrip building blocks for microwave atom chips geared towards trapped atom interferometry. Transverse trapping potentials based on the AC Zeeman (ACZ) effect can be formed from the combined microwave magnetic near fields of a pair or a triplet of parallel microstrip transmission lines. Axial confinement can be provided by a microwave lattice (standing wave) along the microstrip traces. Microwave fields provide additional parameters for dynamically adjusting ACZ potentials: detuning of the applied frequency to select atomic transitions and local polarization controlled by the relative phase in multiple microwave currents. Multiple ACZ traps and potentials, operating at different frequencies, can be targeted to different spin states simultaneously, thus enabling spin-specific manipulation of atoms and spin-dependent trapped atom interferometry. 
    more » « less