Thermoelectric materials, which can convert waste heat into electricity or act as solid‐state Peltier coolers, are emerging as key technologies to address global energy shortages and environmental sustainability. However, discovering materials with high thermoelectric conversion efficiency is a complex and slow process. The emerging field of high‐throughput material discovery demonstrates its potential to accelerate the development of new thermoelectric materials combining high efficiency and low cost. The synergistic integration of high‐throughput material processing and characterization techniques with machine learning algorithms can form an efficient closed‐loop process to generate and analyze broad datasets to discover new thermoelectric materials with unprecedented performances. Meanwhile, the recent development of advanced manufacturing methods provides exciting opportunities to realize scalable, low‐cost, and energy‐efficient fabrication of thermoelectric devices. This review provides an overview of recent advances in discovering thermoelectric materials using high‐throughput methods, including processing, characterization, and screening. Advanced manufacturing methods of thermoelectric devices are also introduced to realize the broad impacts of thermoelectric materials in power generation and solid‐state cooling. In the end, this article also discusses the future research prospects and directions.
more » « less- Award ID(s):
- 1747685
- PAR ID:
- 10574972
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small Science
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2688-4046
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The ability of thermoelectric (TE) materials to convert thermal energy to electricity and vice versa highlights them as a promising candidate for sustainable energy applications. Despite considerable increases in the figure of merit zT of thermoelectric materials in the past two decades, there is still a prominent need to develop scalable synthesis and flexible manufacturing processes to convert high-efficiency materials into high-performance devices. Scalable printing techniques provide a versatile solution to not only fabricate both inorganic and organic TE materials with fine control over the compositions and microstructures, but also manufacture thermoelectric devices with optimized geometric and structural designs that lead to improved efficiency and system-level performances. In this review, we aim to provide a comprehensive framework of printing thermoelectric materials and devices by including recent breakthroughs and relevant discussions on TE materials chemistry, ink formulation, flexible or conformable device design, and processing strategies, with an emphasis on additive manufacturing techniques. In addition, we review recent innovations in the flexible, conformal, and stretchable device architectures and highlight state-of-the-art applications of these TE devices in energy harvesting and thermal management. Perspectives of emerging research opportunities and future directions are also discussed. While this review centers on thermoelectrics, the fundamental ink chemistry and printing processes possess the potential for applications to a broad range of energy, thermal and electronic devices.more » « less
-
Abstract Roll-to-roll (R2R) manufacturing is a highly efficient industrial method for continuously processing flexible webs through a series of rollers. With advancements in technology, R2R manufacturing has emerged as one of the most economical production methods for advanced products, such as flexible electronics, renewable energy devices, and 2D materials. However, the development of cost-effective and efficient manufacturing processes for these products presents new challenges, including higher precision requirements, the need for improved in-line quality control, and the integration of material processing dynamics into the traditional web handling system. This paper reviews the state of the art in advanced R2R manufacturing, focusing on modeling and control, and highlights research areas that need further development.
-
Abstract Lithium‐ion batteries (LIBs) have significantly impacted the daily lives, finding broad applications in various industries such as consumer electronics, electric vehicles, medical devices, aerospace, and power tools. However, they still face issues (i.e., safety due to dendrite propagation, manufacturing cost, random porosities, and basic & planar geometries) that hinder their widespread applications as the demand for LIBs rapidly increases in all sectors due to their high energy and power density values compared to other batteries. Additive manufacturing (AM) is a promising technique for creating precise and programmable structures in energy storage devices. This review first summarizes light, filament, powder, and jetting‐based 3D printing methods with the status on current trends and limitations for each AM technology. The paper also delves into 3D printing‐enabled electrodes (both anodes and cathodes) and solid‐state electrolytes for LIBs, emphasizing the current state‐of‐the‐art materials, manufacturing methods, and properties/performance. Additionally, the current challenges in the AM for electrochemical energy storage (EES) applications, including limited materials, low processing precision, codesign/comanufacturing concepts for complete battery printing, machine learning (ML)/artificial intelligence (AI) for processing optimization and data analysis, environmental risks, and the potential of 4D printing in advanced battery applications, are also presented.
-
Discovery of novel high-performance materials with earth-abundant and environmentally friendly elements is a key task for civil applications based on advanced thermoelectric technology. Advancements in this area are greatly limited by the traditional trial-and-error method, which is both time-consuming and expensive. The materials genome initiative can provide a powerful strategy to screen for potential novel materials using high-throughput calculations, materials characterization, and synthesis. In this study, we developed a modified diffusion-couple high-throughput synthesis method and an automated histogram analysis technique to quickly screen high-performance copper chalcogenide thermoelectric materials, which has been well demonstrated in the ternary Cu–Sn–S compounds. A new copper chalcogenide with the composition of Cu 7 Sn 3 S 10 was discovered. Studies on crystal structure, band gap, and electrical and thermal transport properties were performed to show that it is a promising thermoelectric material with ultralow lattice thermal conductivity, moderate band gap, and decent electrical conductivity. Via Cl doping, the thermoelectric dimensionless figure of merit zT reaches 0.8 at 750 K, being among the highest values reported in Cu–Sn–S ternary materials. The modified diffusion-couple high-throughput synthesis method and automated histogram analysis technique developed in this study also shed light on the development of other advanced thermoelectric and functional materials.more » « less
-
Thermoelectric devices have great potential as a sustainable energy conversion technology to harvest waste heat and perform spot cooling with high reliability. However, most of the thermoelectric devices use toxic and expensive materials, which limits their application. These materials also require high-temperature fabrication processes, limiting their compatibility with flexible, bio-compatible substrate. Printing electronics is an exciting new technique for fabrication that has enabled a wide array of biocompatible and conformable systems. Being able to print thermoelectric devices allows them to be custom made with much lower cost for their specific application. Significant effort has been directed toward utilizing polymers and other bio-friendly materials for low-cost, lightweight, and flexible thermoelectric devices. Fortunately, many of these materials can be printed using low-temperature printing processes, enabling their fabrication on biocompatible substrates. This review aims to report the recent progress in developing high performance thermoelectric inks for various printing techniques. In addition to the usual thermoelectric performance measures, we also consider the attributes of flexibility and the processing temperatures. Finally, recent advancement of printed device structures is discussed which aims to maximize the temperature difference across the junctions.more » « less