skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New Directions for Thermoelectrics: A Roadmap from High‐Throughput Materials Discovery to Advanced Device Manufacturing
Thermoelectric materials, which can convert waste heat into electricity or act as solid‐state Peltier coolers, are emerging as key technologies to address global energy shortages and environmental sustainability. However, discovering materials with high thermoelectric conversion efficiency is a complex and slow process. The emerging field of high‐throughput material discovery demonstrates its potential to accelerate the development of new thermoelectric materials combining high efficiency and low cost. The synergistic integration of high‐throughput material processing and characterization techniques with machine learning algorithms can form an efficient closed‐loop process to generate and analyze broad datasets to discover new thermoelectric materials with unprecedented performances. Meanwhile, the recent development of advanced manufacturing methods provides exciting opportunities to realize scalable, low‐cost, and energy‐efficient fabrication of thermoelectric devices. This review provides an overview of recent advances in discovering thermoelectric materials using high‐throughput methods, including processing, characterization, and screening. Advanced manufacturing methods of thermoelectric devices are also introduced to realize the broad impacts of thermoelectric materials in power generation and solid‐state cooling. In the end, this article also discusses the future research prospects and directions.  more » « less
Award ID(s):
1747685
PAR ID:
10574972
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small Science
Volume:
5
Issue:
3
ISSN:
2688-4046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability of thermoelectric (TE) materials to convert thermal energy to electricity and vice versa highlights them as a promising candidate for sustainable energy applications. Despite considerable increases in the figure of merit zT of thermoelectric materials in the past two decades, there is still a prominent need to develop scalable synthesis and flexible manufacturing processes to convert high-efficiency materials into high-performance devices. Scalable printing techniques provide a versatile solution to not only fabricate both inorganic and organic TE materials with fine control over the compositions and microstructures, but also manufacture thermoelectric devices with optimized geometric and structural designs that lead to improved efficiency and system-level performances. In this review, we aim to provide a comprehensive framework of printing thermoelectric materials and devices by including recent breakthroughs and relevant discussions on TE materials chemistry, ink formulation, flexible or conformable device design, and processing strategies, with an emphasis on additive manufacturing techniques. In addition, we review recent innovations in the flexible, conformal, and stretchable device architectures and highlight state-of-the-art applications of these TE devices in energy harvesting and thermal management. Perspectives of emerging research opportunities and future directions are also discussed. While this review centers on thermoelectrics, the fundamental ink chemistry and printing processes possess the potential for applications to a broad range of energy, thermal and electronic devices. 
    more » « less
  2. Abstract Roll-to-roll (R2R) manufacturing is a highly efficient industrial method for continuously processing flexible webs through a series of rollers. With advancements in technology, R2R manufacturing has emerged as one of the most economical production methods for advanced products, such as flexible electronics, renewable energy devices, and 2D materials. However, the development of cost-effective and efficient manufacturing processes for these products presents new challenges, including higher precision requirements, the need for improved in-line quality control, and the integration of material processing dynamics into the traditional web handling system. This paper reviews the state of the art in advanced R2R manufacturing, focusing on modeling and control, and highlights research areas that need further development. 
    more » « less
  3. The ever-increasing energy demand has highlighted the need for sustainable, low-carbon, and multi-functional energy solutions. Recently, multi-material additive manufacturing (MMAM) has become an emerging processing approach to prototype energy storage and conversion devices by enabling the fabrication of complex systems in a single, streamlined process while offering design freedom to customize end-product properties at precise, user-defined patterns and geometries. Moreover, it provides opportunities to fine-tune interfaces and material compositions at the microscale, opening new avenues for next-generation energy storage and conversion devices. As MMAM is still in its early stages, a comprehensive understanding of the interplay between material chemistry, processing methods, and device design is fundamental to fully realize its potential for developing high-performance energy materials. This review proposes a framework to bridge the gaps between the fundamental principles of processing physics and the practical implementation of various MMAM techniques in fabricating advanced energy storage and conversion devices, highlighting research challenges and future opportunities. 
    more » « less
  4. Metal additive manufacturing (AM) holds immense potential for developing advanced structural alloys. However, the complex, heterogeneous nature of AM-produced materials presents significant challenges to traditional material characterization and optimization methods. This review explores the integration of artificial intelligence (AI) and machine learning (ML) with high-throughput material characterization protocols to rapidly establish the process–structure–property (PSP) relationships critically needed to dramatically accelerate the development of metal AM processes. Combinatorial high-throughput evaluations, including rapid material synthesis and nonstandard high-throughput testing protocols, such as spherical indentation and small punch tests, are discussed for their capability to rapidly assess mechanical properties and establish PSP linkages. Furthermore, the review examines the role of AI and ML in optimizing AM processes, particularly through Bayesian optimization, which offers new avenues for efficient exploration of high-dimensional design spaces. The review envisions a future where AI- and ML-driven, autonomous AM development cycles significantly enhance material and process optimization. 
    more » « less
  5. Discovery of novel high-performance materials with earth-abundant and environmentally friendly elements is a key task for civil applications based on advanced thermoelectric technology. Advancements in this area are greatly limited by the traditional trial-and-error method, which is both time-consuming and expensive. The materials genome initiative can provide a powerful strategy to screen for potential novel materials using high-throughput calculations, materials characterization, and synthesis. In this study, we developed a modified diffusion-couple high-throughput synthesis method and an automated histogram analysis technique to quickly screen high-performance copper chalcogenide thermoelectric materials, which has been well demonstrated in the ternary Cu–Sn–S compounds. A new copper chalcogenide with the composition of Cu 7 Sn 3 S 10 was discovered. Studies on crystal structure, band gap, and electrical and thermal transport properties were performed to show that it is a promising thermoelectric material with ultralow lattice thermal conductivity, moderate band gap, and decent electrical conductivity. Via Cl doping, the thermoelectric dimensionless figure of merit zT reaches 0.8 at 750 K, being among the highest values reported in Cu–Sn–S ternary materials. The modified diffusion-couple high-throughput synthesis method and automated histogram analysis technique developed in this study also shed light on the development of other advanced thermoelectric and functional materials. 
    more » « less