skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 28, 2026

Title: The Thermosphere Was Poorly Predictable Not Only During but Also Before and After the Starlink Storm on 3–4 February 2022
Abstract Observation‐based simulations of the ionosphere were performed with the NRLMSISE‐00 model for six locations around the globe during 1–9 February 2022, which includes the so‐called Starlink Storm. Unlike other studies, we focused on the magnetically quiet days around the storm. Unexpectedly, the observed values of the F2‐layer peak density were ∼50% larger than the simulated values. We show that this implies that the daytime O density in the thermosphere was systematically ∼30% larger than the NRLMSISE‐00 predicts. Further investigation shows that this discrepancy is not an exclusive feature of the period around the Starlink Storm and a similar problem happens for some periods for different years. It is unclear if the reason is an actual increase of the O density or its underestimation by the model. Resolving this problem is critical for providing accurate predictions of the atmosphere to avoid the degradation of normal operation or even loss of space assets.  more » « less
Award ID(s):
2411430 1952737
PAR ID:
10575088
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
2
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract NRLMSIS® 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity. NRLMSIS 2.0 is a major, reformulated upgrade of the previous version, NRLMSISE‐00. The model now couples thermospheric species densities to the entire column, via an effective mass profile that transitions each species from the fully mixed region below ~70 km altitude to the diffusively separated region above ~200 km. Other changes include the extension of atomic oxygen down to 50 km and the use of geopotential height as the internal vertical coordinate. We assimilated extensive new lower and middle atmosphere temperature, O, and H data, along with global average thermospheric mass density derived from satellite orbits, and we validated the model against independent samples of these data. In the mesosphere and below, residual biases and standard deviations are considerably lower than NRLMSISE‐00. The new model is warmer in the upper troposphere and cooler in the stratosphere and mesosphere. In the thermosphere, N2and O densities are lower in NRLMSIS 2.0; otherwise, the NRLMSISE‐00 thermosphere is largely retained. Future advances in thermospheric specification will likely require new in situ mass spectrometer measurements, new techniques for species density measurement between 100 and 200 km, and the reconciliation of systematic biases among thermospheric temperature and composition data sets, including biases attributable to long‐term changes. 
    more » « less
  2. Abstract Thermospheric density influences the atmospheric drag and is crucial for space missions. This paper introduces a global thermospheric density prediction framework based on a deep evidential method. The proposed framework predicts thermospheric density at the required time and geographic position with given geomagnetic and solar indices. It is called global to differentiate it from existing research that only predicts density along a satellite orbit. Through the deep evidential method, we assimilate data from various sources including solar and geomagnetic conditions, accelerometer‐derived density data, and empirical models including the Jacchia‐Bowman model (JB‐2008) and the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Extended (NRLMSISE‐00) model. The framework is investigated on five test cases along various satellites from 2003 to 2015 involving geomagnetic storms with Disturbance Storm Time (Dst) values smaller than −50 . Results show that the proposed framework can generate density with higher accuracy than the two empirical models. It can also obtain reliable uncertainty estimations. Global density estimations at altitudes from 200 to 550 km are also presented and compared with empirical models on both quiet and storm conditions. 
    more » « less
  3. null (Ed.)
    The specification and prediction of density fluctuations in the thermosphere, especially during geomagnetic storms, is a key challenge for space weather observations and modeling. It is of great operational importance for tracking objects orbiting in near-Earth space. For low-Earth orbit, variations in neutral density represent the most important uncertainty for propagation and prediction of satellite orbits. An international conference in 2018 conducted under the auspices of the NASA Community Coordinated Modeling Center (CCMC) included a workshop on neutral density modeling, using both empirical and numerical methods, and resulted in the organization of an initial effort of model comparison and evaluation. Here, we present an updated metric for model assessment under geomagnetic storm conditions by dividing a storm in four phases with respect to the time of minimum Dst and then calculating the mean density ratios and standard deviations and correlations. Comparisons between three empirical (NRLMSISE-00, JB2008 and DTM2013) and two first-principles models (TIE-GCM and CTIPe) and neutral density data sets that include measurements by the CHAMP, GRACE, and GOCE satellites for 13 storms are presented. The models all show reduced performance during storms, notably much increased standard deviations, but DTM2013, JB2008 and CTIPe did not on average reveal a significant bias in the four phases of our metric. DTM2013 and TIE-GCM driven with the Weimer model achieved the best results taking the entire storm event into account, while NRLMSISE-00 systematically and significantly underestimates the storm densities. Numerical models are still catching up to empirical methods on a statistical basis, but as their drivers become more accurate and they become available at higher resolutions, they will surpass them in the foreseeable future. 
    more » « less
  4. Abstract The Starlink satellites launched on 3 February 2022 were lost before they fully arrived in their designated orbits. The loss was attributed to two moderate geomagnetic storms that occurred consecutively on 3–4 February. We investigate the thermospheric neutral mass density variation during these storms with the Multiscale Atmosphere‐Geospace Environment (MAGE) model, a first‐principles, fully coupled geospace model. Simulated neutral density enhancements are validated by Swarm satellite measurements at the altitude of 400–500 km. Comparison with standalone TIEGCM and empirical NRLMSIS 2.0 and DTM‐2013 models suggests better performance by MAGE in predicting the maximum density enhancement and resolving the gradual recovery process. Along the Starlink satellite orbit in the middle thermosphere (∼200 km altitude), MAGE predicts up to 150% density enhancement near the second storm peak while standalone TIEGCM, NRLMSIS 2.0, and DTM‐2013 suggest only ∼50% increase. MAGE also suggests altitudinal, longitudinal, and latitudinal variability of storm‐time percentage density enhancement due to height dependent Joule heating deposition per unit mass, thermospheric circulation changes, and traveling atmospheric disturbances. This study demonstrates that a moderate storm can cause substantial density enhancement in the middle thermosphere. Thermospheric mass density strongly depends on the strength, timing, and location of high‐latitude energy input, which cannot be fully reproduced with empirical models. A physics‐based, fully coupled geospace model that can accurately resolve the high‐latitude energy input and its variability is critical to modeling the dynamic response of thermospheric neutral density during storm time. 
    more » « less
  5. Abstract On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate geomagnetic storm, and another moderate storm occurred on the next day. The resulting increase in atmospheric drag led to 38 out of the 49 satellites reentering the atmosphere in the following days. In this work, we use both observations and simulations to perform a detailed investigation of the thermospheric conditions during this storm. Observations at higher altitudes, by Swarm‐A (∼438 km, 09/21 Local Time [LT]) and the Gravity Recovery and Climate Experiment Follow‐On (∼505 km, 06/18 LT) missions show that during the main phase of the storms the neutral mass density increased by 110% and 120%, respectively. The storm‐time enhancement extended to middle and low latitudes and was stronger in the northern hemisphere. To further investigate the thermospheric variations, we used six empirical and first‐principle numerical models. We found the models captured the upper and lower thermosphere changes, however, their simulated density enhancements differ by up to 70%. Further, the models showed that at the low orbital altitudes of the Starlink satellites (i.e., 200–300 km) the global averaged storm‐time density enhancement reached up to ∼35%–60%. Although such storm effects are far from the largest, they seem to be responsible for the reentry of the 38 satellites. 
    more » « less