skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Mpemba-Like Sensory Withdrawal Effect
Biological sensors rely on the temporal dynamics of ligand concentration for signaling. The sensory performance is bounded by the distinguishability between the sensory state transition dynamics under different environmental protocols. This work presents a comprehensive theory to characterize arbitrary transient sensory dynamics of biological sensors. Here the sensory performance is quantified by the Kullback-Leibler (KL) divergence between the probability distributions of the sensor's stochastic paths. We introduce a novel benchmark to assess a sensor's transient sensory performance arbitrarily far from equilibrium. We identify a counterintuitive phenomenon in multistate sensors: while an initial exposure to high ligand concentration may hinder a sensor's sensitivity towards a future concentration up-shift, certain sensors may show a boost in sensitivity if the initial high concentration exposure is followed by a transient resetting at a low concentration environment. The boosted performance exceeds that of a sensor starting from an initially low concentration environment. This effect, reminiscent of a drug withdrawal effect, can be explained by the Markovian dynamics of the multistate sensor, similar to the Markovian Mpemba effect. Moreover, an exhaustive machine learning study of four-state sensors reveals a tight connection between the sensor's performance and the structure of the Markovian graph of its states. Published by the American Physical Society2024  more » « less
Award ID(s):
2145256
PAR ID:
10575280
Author(s) / Creator(s):
;
Publisher / Repository:
APS
Date Published:
Journal Name:
PRX Life
Volume:
2
Issue:
4
ISSN:
2835-8279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the collective non-Markovian dynamics of two fully excited two-level atoms coupled to a one-dimensional waveguide in the presence of delay. We demonstrate that analogous to the well-known superfluorescence phenomena, where an inverted atomic ensemble synchronizes to enhance its emission, there is a “subfluorescence” effect that synchronizes the atoms into an entangled dark state depending on the interatomic separation. The phenomenon can lead to a two-photon bound state in the continuum. Our results are pertinent to long-distance quantum networks, presenting a mechanism for spontaneous entanglement generation between distant quantum emitters. Published by the American Physical Society2024 
    more » « less
  2. Performing interferometry in an optical lattice formed by standing waves of light offers potential advantages over its free-space equivalents since the atoms can be confined and manipulated by the optical potential. We demonstrate such an interferometer in a one-dimensional lattice and show the ability to control the atoms by imaging and reconstructing the wave function at many stages during its cycle. An acceleration signal is applied, and the resulting performance is seen to be close to the optimum possible for the time-space area enclosed according to quantum theory. Our methodology of machine design enables the sensor to be reconfigurable on the fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors that will have a wide range of potential applications. Published by the American Physical Society2024 
    more » « less
  3. Waveguide quantum electrodynamics constitutes a modern paradigm for the interaction of light and matter, in which strong coupling, bath structure, and propagation delays can break the radiative conditions that quantum emitters typically encounter in free space. These characteristics intertwine the excitations of quantum emitters and guided radiation modes to form complex multiphoton dynamics. So far, combining the collective decay of the emitters with the non-Markovian effects induced by the modes has escaped a full solution and the detailed physics behind these systems remains unknown. Here we analyze such a collective non-Markovian decay in a minimal system of two excited emitters coupled to a one-dimensional single-band waveguide. We develop an exact solution for this system in terms of elementary functions that unveils hidden symmetries and predicts new forms of spontaneous decay. The collective non-Markovian dynamics, which are strongly dependent on the vacuum coupling and the detuning from the center of the band, show exotic features that can be characterized with a simple and readily available criterion. Our analytic methods shed light on the complexity of collective light-matter interactions and open up a pathway for understanding multiparticle open quantum systems. Published by the American Physical Society2024 
    more » « less
  4. Nonreciprocal interactions fueled by local energy consumption can be found in biological and synthetic active matter at scales where viscoelastic forces are important. Such systems can be described by “odd” viscoelasticity, which assumes fewer material symmetries than traditional theories. Here we study odd viscoelasticity analytically and using lattice Boltzmann simulations. We identify a pattern-forming instability which produces an oscillating array of fluid vortices, and we elucidate which features govern the growth rate, wavelength, and saturation of the vortices. Our observation of pattern formation through odd mechanical response can inform models of biological patterning and guide engineering of odd dynamics in soft active matter systems. Published by the American Physical Society2024 
    more » « less
  5. This paper is associated with a poster winner of a 2023 American Physical Society's Division of Fluid Dynamics (DFD) Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available online at the Gallery of Fluid Motion, . Published by the American Physical Society2024 
    more » « less