skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying intermediary processes in ecology using causal mediation analyses
Ecologists seek to understand the intermediary ecological processes through which changes in one attribute in a system affect other attributes. Yet, quantifying the causal effects of these mediating processes in ecological systems is challenging. Researchers must define what they mean by a “mediated effect”, determine what assumptions are required to estimate mediation effects without bias, and assess whether these assumptions are credible for a study. To address these challenges, scholars in fields outside of ecology have made significant advances in mediation analysis over the past three decades. Here, we bring these advances to the attention of ecologists, for whom understanding mediating processes and deriving causal inferences are important for testing theory and developing resource management and conservation strategies. To illustrate both the challenges and the advances in quantifying mediation effects, we use a hypothetical ecological study. With this study, we show how common research designs used in ecology to detect and quantify mediation effects may have biases and how these biases can be addressed through alternative designs. Throughout the review, we highlight how causal claims rely on causal assumptions, and we illustrate how different designs or definitions of mediation effects can relax some of these assumptions. In contrast to statistical assumptions, causal assumptions are not verifiable from data, so we also describe procedures that researchers can use to assess the sensitivity of a study’s results to potential violations of its causal assumptions. The advances in causal mediation analyses reviewed herein will provide ecological researchers with approaches to clearly communicate the causal assumptions necessary for valid inferences and examine potential violations to these assumptions, which will enable rigorous and reproducible explanations of intermediary processes in ecology.  more » « less
Award ID(s):
2340606
PAR ID:
10575285
Author(s) / Creator(s):
; ;
Publisher / Repository:
EcoEvoRxiv - Accepted in Biology Letters
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Experiments have long been the gold standard for causal inference in Ecology. As Ecology tackles progressively larger problems, however, we are moving beyond the scales at which randomised controlled experiments are feasible. To answer causal questions at scale, we need to also use observational data —something Ecologists tend to view with great scepticism. The major challenge using observational data for causal inference is confounding variables: variables affecting both a causal variable and response of interest. Unmeasured confounders—known or unknown—lead to statistical bias, creating spurious correlations and masking true causal relationships. To combat this omitted variable bias, other disciplines have developed rigorous approaches for causal inference from observational data that flexibly control for broad suites of confounding variables. We show how ecologists can harness some of these methods—causal diagrams to identify confounders coupled with nested sampling and statistical designs—to reduce risks of omitted variable bias. Using an example of estimating warming effects on snails, we show how current methods in Ecology (e.g., mixed models) produce incorrect inferences due to omitted variable bias and how alternative methods can eliminate it, improving causal inferences with weaker assumptions. Our goal is to expand tools for causal inference using observational and imperfect experimental data in Ecology. 
    more » « less
  2. ABSTRACT Ecology often seeks to answer causal questions, and while ecologists have a rich history of experimental approaches, novel observational data streams and the need to apply insights across naturally occurring conditions pose opportunities and challenges. Other fields have developed causal inference approaches that can enhance and expand our ability to answer ecological causal questions using observational or experimental data. However, the lack of comprehensive resources applying causal inference to ecological settings and jargon from multiple disciplines creates barriers. We introduce approaches for causal inference, discussing the main frameworks for counterfactual causal inference, how causal inference differs from other research aims and key challenges; the application of causal inference in experimental and quasi‐experimental study designs; appropriate interpretation of the results of causal inference approaches given their assumptions and biases; foundational papers; and the data requirements and trade‐offs between internal and external validity posed by different designs. We highlight that these designs generally prioritise internal validity over generalisability. Finally, we identify opportunities and considerations for ecologists to further integrate causal inference with synthesis science and meta‐analysis and expand the spatiotemporal scales at which causal inference is possible. We advocate for ecology as a field to collectively define best practices for causal inference. 
    more » « less
  3. Abstract Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs — designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [−4.1, −0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones. 
    more » « less
  4. As climate change increasingly affects biodiversity and ecosystem services, a key challenge in ecology is accurate attribution of these impacts. Though experimental studies have greatly advanced our understanding of climate change impacts on ecological systems, experimental results are difficult to generalize to real-world scenarios. To better capture realized impacts, ecologists can use observational data. Disentangling cause and effect using observational data, however, requires careful research design. Here we describe advances in causal inference that can improve climate change attribution in observational settings. Our framework includes five steps: 1) describe the theoretical foundation, 2) choose appropriate observational data sets, 3) design a causal inference analysis, 4) estimate a counterfactual scenario, and 5) evaluate assumptions and results using robustness checks. We then demonstrate this framework using a case study focused on detecting climate change impacts on whitebark pine growth in California’s Sierra Nevada. We conclude with a discussion of challenges and frontiers in ecological climate change attribution. Our aim is to provide an accessible foundation for applying observational causal inference to climate change attribution in ecology. 
    more » « less
  5. ABSTRACT Disparities in health or well‐being experienced by minority groups can be difficult to study using the traditional exposure‐outcome paradigm in causal inference, since potential outcomes in variables such as race or sexual minority status are challenging to interpret. Causal decomposition analysis addresses this gap by positing causal effects on disparities under interventions to other intervenable exposures that may play a mediating role in the disparity. While invoking weaker assumptions than causal mediation approaches, decomposition analyses are often conducted in observational settings and require uncheckable assumptions that eliminate unmeasured confounders. Leveraging the marginal sensitivity model, we develop a sensitivity analysis for weighted causal decomposition estimators and use the percentile bootstrap to construct valid confidence intervals for causal effects on disparities. We also propose a two‐parameter reformulation that enhances interpretability and facilitates an intuitive understanding of the plausibility of unmeasured confounders and their effects. We illustrate our framework on a study examining the effect of parental support on disparities in suicidal ideation among sexual minority youth. We find that the effect is small and sensitive to unmeasured confounding, suggesting that further screening studies are needed to identify mitigating interventions in this vulnerable population. 
    more » « less